首页> 美国卫生研究院文献>Frontiers in Neuroinformatics >Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data
【2h】

Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data

机译:可重现的神经网络仿真:在网络活动数据水平上模型验证的统计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational neuroscience relies on simulations of neural network models to bridge the gap between the theory of neural networks and the experimentally observed activity dynamics in the brain. The rigorous validation of simulation results against reference data is thus an indispensable part of any simulation workflow. Moreover, the availability of different simulation environments and levels of model description require also validation of model implementations against each other to evaluate their equivalence. Despite rapid advances in the formalized description of models, data, and analysis workflows, there is no accepted consensus regarding the terminology and practical implementation of validation workflows in the context of neural simulations. This situation prevents the generic, unbiased comparison between published models, which is a key element of enhancing reproducibility of computational research in neuroscience. In this study, we argue for the establishment of standardized statistical test metrics that enable the quantitative validation of network models on the level of the population dynamics. Despite the importance of validating the elementary components of a simulation, such as single cell dynamics, building networks from validated building blocks does not entail the validity of the simulation on the network scale. Therefore, we introduce a corresponding set of validation tests and present an example workflow that practically demonstrates the iterative model validation of a spiking neural network model against its reproduction on the SpiNNaker neuromorphic hardware system. We formally implement the workflow using a generic Python library that we introduce for validation tests on neural network activity data. Together with the companion study (Trensch et al., ), the work presents a consistent definition, formalization, and implementation of the verification and validation process for neural network simulations.
机译:计算神经科学依靠神经网络模型的仿真来弥合神经网络理论与实验观察到的大脑活动动态之间的差距。因此,针对参考数据对仿真结果进行严格的验证是任何仿真工作流程中必不可少的部分。此外,不同的仿真环境和模型描述级别的可用性还要求相对于彼此验证模型实现以评估其等效性。尽管在模型,数据和分析工作流程的形式化描述方面取得了长足的进步,但是在神经仿真的背景下,关于验证工作流程的术语和实际实施尚无公认的共识。这种情况阻止了已发布模型之间的一般性,公正的比较,这是增强神经科学计算研究的可重复性的关键要素。在这项研究中,我们主张建立标准化的统计测试指标,以便能够在人口动态水平上对网络模型进行定量验证。尽管验证仿真的基本组成部分(如单细胞动力学)的重要性,但从已验证的构建块构建网络并不能保证仿真在网络规模上的有效性。因此,我们介绍了一组相应的验证测试,并提供了一个示例工作流程,该工作流程实际上演示了针对尖刺神经网络模型在SpiNNaker神经形态硬件系统上的复制进行的迭代模型验证。我们使用通用Python库正式实现了工作流程,我们引入了通用Python库来对神经网络活动数据进行验证测试。与伴随研究(Trensch等人)一起,该工作为神经网络仿真提供了一致的定义,形式化以及验证和确认过程的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号