首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion
【2h】

Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion

机译:四足机器人运动的进化与自适应控制策略相结合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In traditional robotics, model-based controllers are usually needed in order to bring a robotic plant to the next desired state, but they present critical issues when the dimensionality of the control problem increases and disturbances from the external environment affect the system behavior, in particular during locomotion tasks. It is generally accepted that the motion control of quadruped animals is performed by neural circuits located in the spinal cord that act as a Central Pattern Generator and can generate appropriate locomotion patterns. This is thought to be the result of evolutionary processes that have optimized this network. On top of this, fine motor control is learned during the lifetime of the animal thanks to the plastic connections of the cerebellum that provide descending corrective inputs. This research aims at understanding and identifying the possible advantages of using learning during an evolution-inspired optimization for finding the best locomotion patterns in a robotic locomotion task. Accordingly, we propose a comparative study between two bio-inspired control architectures for quadruped legged robots where learning takes place either during the evolutionary search or only after that. The evolutionary process is carried out in a simulated environment, on a quadruped legged robot. To verify the possibility of overcoming the reality gap, the performance of both systems has been analyzed by changing the robot dynamics and its interaction with the external environment. Results show better performance metrics for the robotic agent whose locomotion method has been discovered by applying the adaptive module during the evolutionary exploration for the locomotion trajectories. Even when the motion dynamics and the interaction with the environment is altered, the locomotion patterns found on the learning robotic system are more stable, both in the joint and in the task space.
机译:在传统的机器人技术中,通常需要基于模型的控制器才能将机器人工厂带入下一个所需状态,但是当控制问题的维度增加并且外部环境的干扰特别影响系统行为时,它们会带来关键问题。在运动任务中。通常公认的是,四足动物的运动控制是通过位于脊髓中的神经回路来执行的,该神经回路充当中央模式发生器并可以产生适当的运动模式。人们认为这是优化该网络的进化过程的结果。最重要的是,由于小脑的塑料连接提供了向下的校正输入,因此在动物的整个生命周期中都可以很好地控制运动。这项研究旨在了解和确定在以进化为灵感的优化过程中使用学习来寻找机器人运动任务中的最佳运动模式的可能优势。因此,我们提出了一种针对四足机器人的两种生物启发控制体系结构的比较研究,其中学习发生在进化搜索过程中或仅在进化搜索之后发生。进化过程是在四足腿机器人的模拟环境中进行的。为了验证克服现实差距的可能性,已通过更改机器人动力学及其与外部环境的相互作用来分析两个系统的性能。结果表明,通过在运动轨迹的演化探索中应用自适应模块,发现了其运动方法的机器人代理具有更好的性能指标。即使运动动力学和与环境的相互作用发生了变化,在学习机器人系统上发现的运动模式在关节和任务空间中也更加稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号