首页> 美国卫生研究院文献>Frontiers in Neuroscience >Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration
【2h】

Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration

机译:闭环神经假体在功能恢复中的约束与适应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Closed-loop neuroprosthetics aim to compensate for lost function, e.g., by controlling external devices such as prostheses or wheelchairs. Such assistive approaches seek to maximize speed and classification accuracy for high-dimensional control. More recent approaches use similar technology, but aim to restore lost motor function in the long term. To achieve this goal, restorative neuroprosthetics attempt to facilitate motor re-learning and to strengthen damaged and/or alternative neural connections on the basis of neurofeedback training within rehabilitative environments. Such a restorative approach requires reinforcement learning of self-modulated brain activity which is considered to be beneficial for functional rehabilitation, e.g., improvement of β-power modulation over sensorimotor areas for post-stroke movement restoration. Patients with motor impairments, however, may also have a compromised ability for motor task-related regulation of the targeted brain activity. This would affect the estimation of feature weights and hence the classification accuracy of the feedback device. This, in turn, can frustrate the patients and compromise their motor learning. Furthermore, the feedback training may even become erroneous when unconstrained classifier adaptation—which is often used in assistive approaches—is also applied in this rehabilitation context. In conclusion, the conceptual switch from assistance toward restoration necessitates a methodological paradigm shift from classification accuracy toward instructional efficiency. Furthermore, a constrained feature space, a priori regularized feature weights, and difficulty adaptation present key elements of restorative brain interfaces. These factors need, therefore, to be addressed within a therapeutic framework to facilitate reinforcement learning of brain self-regulation for restorative purposes.
机译:闭环神经假体旨在例如通过控制诸如假肢或轮椅之类的外部装置来补偿功能丧失。这样的辅助方法试图使用于高维控制的速度和分类精度最大化。最近的方法使用类似的技术,但旨在长期恢复失去的运动功能。为了实现该目标,基于修复环境中的神经反馈训练,修复性神经假体试图促进运动再学习并增强受损和/或替代性神经连接。这种恢复性方法需要加强学习自我调节的大脑活动,这被认为对功能康复有益,例如,改善感觉运动区域的β-功率调制以恢复中风后运动。但是,运动障碍患者的运动功能相关的目标脑活动调节能力也可能受损。这将影响特征权重的估计,从而影响反馈设备的分类精度。反过来,这会使患者沮丧并损害他们的运动学习能力。此外,当无约束的分类器适应(通常在辅助方法中使用)也应用于这种康复环境时,反馈训练甚至可能变得错误。总之,从援助到恢复的概念性转变需要从分类准确性到教学效率的方法范式转变。此外,受约束的特征空间,先验的正则化特征权重和难易度适应是恢复性大脑接口的关键要素。因此,需要在治疗框架内解决这些因素,以促进出于恢复目的加强对大脑自我调节的学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号