首页> 美国卫生研究院文献>Frontiers in Molecular Biosciences >Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases
【2h】

Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases

机译:两种L-色氨酸加工双加氧酶催化复合物形成的不同机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human heme enzymes tryptophan 2,3-dioxygenase (hTDO) and indoleamine 2,3 dioxygenase (hIDO) catalyze the initial step in L-tryptophan (L-Trp) catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites.
机译:人血红素酶色氨酸2,3-二加氧酶(hTDO)和吲哚胺2,3双加氧酶(hIDO)催化L-色氨酸(L-Trp)分解代谢的初始步骤,即将双氧插入L-Trp。这些酶的过度表达会导致L-Trp耗竭和代谢产物积聚,从而导致多种疾病病理中的肿瘤免疫耐受和免疫失调。了解催化活性的三元酶-底物-配体配合物的组装尚未完全解决,但这是设计有效和选择性从头抑制剂的必要前提。越来越多的证据表明三元复合物是通过配体和底物按特定顺序顺序结合而形成的。在hTDO中,非极性L-Trp首先结合,从而减少了活性位点的溶剂化,结果是减少了双氧配体对血红素铁的非生产性氧化,这可能使底物与血红素铁结合。相比之下,在hIDO中,双氧必须首先与血红素铁配位,因为结合的底物会阻止配体接近血红素铁,因此三元复合物不再形成。因此,在高浓度下L-Trp的更快缔合导致底物抑制。在这里,我们总结了我们目前在hTDO和hIDO中三元复合物形成的知识,并将这些发现与其活性位点的结构特点相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号