首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Disruption of Methionine Metabolism in Drosophila melanogaster Impacts Histone Methylation and Results in Loss of Viability
【2h】

Disruption of Methionine Metabolism in Drosophila melanogaster Impacts Histone Methylation and Results in Loss of Viability

机译:果蝇中蛋氨酸代谢的破坏影响组蛋白甲基化并导致活力丧失

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Histone methylation levels, which are determined by the action of both histone demethylases and methyltransferases, impact multiple biological processes by affecting gene expression activity. Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. The functions of methionine metabolic enzymes in regulating biological processes as well as the interaction between the methionine pathway and histone methylation, however, are still not fully understood. Here, we report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone methylation levels. Reduction of little imaginal discs (LID) histone demethylase, but not lysine-specific demethylase 2 (KDM2) demethylase, is able to counter the effects on histone methylation due to reduction of SAM synthetase (SAM-S). Taken together, these results reveal an essential role of key enzymes that control methionine metabolism and histone methylation. Additionally, these findings are an indication of a strong connection between metabolism and epigenetics.
机译:由组蛋白脱甲基酶和甲基转移酶的作用决定的组蛋白甲基化水平通过影响基因表达活性来影响多个生物学过程。蛋氨酸代谢产生主要的甲基供体S-腺苷甲硫氨酸(SAM)用于组蛋白甲基化。然而,蛋氨酸代谢酶在调节生物过程中的功能以及蛋氨酸途径与组蛋白甲基化之间的相互作用仍然未被完全理解。在这里,我们报告说,蛋氨酸代谢和组蛋白脱甲基酶中涉及的某些酶的水平降低,导致果蝇的致死性以及机翼发育和细胞增殖缺陷。另外,蛋氨酸代谢的破坏可直接影响组蛋白甲基化水平。减少少量假想椎间盘(LID)组蛋白脱甲基酶,但不减少赖氨酸特异性脱甲基酶2(KDM2)脱甲基酶,能够抵消由于SAM合成酶(SAM-S)减少而对组蛋白甲基化的影响。综上所述,这些结果揭示了控制蛋氨酸代谢和组蛋白甲基化的关键酶的重要作用。此外,这些发现表明新陈代谢与表观遗传学之间有很强的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号