首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop
【2h】

Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop

机译:使用动物模型来加速自花农作物对选择的反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield.
机译:我们在自花授粉作物的S0(F1)轮回选择中使用了动物模型,该谱系首次包括自交后代的表型和关系记录,以及杂交后代。我们在Pisum sativum中测试了该模型,Pidel sativum是Mendel用来证明遗传的颗粒性质的一年生可食性物种。通过在两个选择周期内的最佳线性无偏预测,评估了分离的S0杂交后代中对灰叶枯萎病(狄氏鞭毛虫复合体)的抗性。纯系祖先提供了跨周期的基因型并发。从第1周期开始,选择102/959个S0植物,对其S1自交后代进行杂交和自交,以产生在第2周期中评估的430 S0和575 S2个体。通过包括所有遗传关系(杂交和自交)来改善分析在谱系中),周期之间的加性和非加性遗传协方差,固定效应(周期和空间线性趋势)以及其他随机效应。根据完整模型中的方差成分计算,在第1和第2周期中,耐草枯病的狭义遗传力分别为0.305和0.352。整个周期的预测育种值的拟合相关为0.82。 S1亲本植物的S2子代的预测育种值的平均准确度为0.851,在第2周期中测试的S0子代的预测育种值为0.805,S1亲本植物的无记录的平均育种值为0.878。下一个周期的预测选择响应为11.2%,SO选择比例为20%。这是动物模型首次应用于自交植物杂合子群体的循环选择。该方法可以用于基因组选择,也可以用于从S0衍生的块体中测得的性状,例如谷物产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号