首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function Glucose Uptake and the Carbon Starvation Response
【2h】

The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function Glucose Uptake and the Carbon Starvation Response

机译:构巢曲霉ATM激酶调节线粒体功能葡萄糖摄取和碳饥饿反应。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic stress, AtmA appears to perform a role in the regulation of TOR signaling, involving the retrograde and SnfA pathways. Thus, AtmA may represent a link between mitochondrial function and cell cycle or growth, possibly through the influence of the TOR and XprG function.
机译:线粒体提供细胞能量,并在适应代谢应激中发挥作用。在哺乳动物中,共济失调-毛细血管扩张突变(ATM)激酶充当控制线粒体功能的氧化还原传感器。随后,利用转录组学和遗传学研究来阐明真菌ATM同系物在碳饥饿期间所起的作用。在构巢曲霉中,AtmA被证明可控制线粒体功能和葡萄糖摄取。雷帕霉素(TOR)靶标调节的碳饥饿反应显示为AtmA依赖性,包括自噬和水解酶分泌。 AtmA还调节p53样转录因子XprG,抑制饥饿诱导的XprG依赖性蛋白酶分泌和细胞死亡。因此,通过TOR和XprG功能的影响,AtmA可能代表线粒体应激,代谢和生长之间的直接或间接联系。细胞生长和分裂与养分利用率的协调对于所有微生物在异质环境中成功增殖至关重要。线粒体不仅提供细胞能量,而且在适应新陈代谢压力以及生存途径和死亡途径之间的串扰中也发挥作用。本构巢曲霉的当前研究表明,AtmA还控制线粒体的质量,功能和氧化磷酸化,直接或间接影响葡萄糖的摄取。碳饥饿反应,包括自噬,新陈代谢转移至乙醛酸循环以及碳清除酶的分泌均依赖于AtmA。碳饥饿反应的转录组谱分析表明,AtmA如何直接或间接影响TOR信号和逆向反应,即线粒体功能障碍的信号。还显示AtmA激酶影响p53样转录因子,抑制饥饿诱导的XprG依赖性蛋白酶分泌和细胞死亡。因此,响应代谢压力,AtmA似乎在TOR信号的调节中起作用,涉及逆行和SnfA途径。因此,AtmA可能代表线粒体功能与细胞周期或生长之间的联系,可能是通过TOR和XprG功能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号