首页> 美国卫生研究院文献>Genetics >Defining the Epigenetic Mechanism of Asymmetric Cell Division of Schizosaccharomyces japonicus Yeast
【2h】

Defining the Epigenetic Mechanism of Asymmetric Cell Division of Schizosaccharomyces japonicus Yeast

机译:确定日本裂殖酵母酵母不对称细胞分裂的表观遗传机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key question in developmental biology addresses the mechanism of asymmetric cell division. Asymmetry is crucial for generating cellular diversity required for development in multicellular organisms. As one of the potential mechanisms, chromosomally borne epigenetic difference between sister cells that changes mating/cell type has been demonstrated only in the Schizosaccharomyces pombe fission yeast. For technical reasons, it is nearly impossible to determine the existence of such a mechanism operating during embryonic development of multicellular organisms. Our work addresses whether such an epigenetic mechanism causes asymmetric cell division in the recently sequenced fission yeast, S. japonicus (with 36% GC content), which is highly diverged from the well-studied S. pombe species (with 44% GC content). We find that the genomic location and DNA sequences of the mating-type loci of S. japonicus differ vastly from those of the S. pombe species. Remarkably however, similar to S. pombe, the S. japonicus cells switch cell/mating type after undergoing two consecutive cycles of asymmetric cell divisions: only one among four “granddaughter” cells switches. The DNA-strand–specific epigenetic imprint at the mating-type locus1 initiates the recombination event, which is required for cellular differentiation. Therefore the S. pombe and S. japonicus mating systems provide the first two examples in which the intrinsic chirality of double helical structure of DNA forms the primary determinant of asymmetric cell division. Our results show that this unique strand-specific imprinting/segregation epigenetic mechanism for asymmetric cell division is evolutionary conserved. Motivated by these findings, we speculate that DNA-strand–specific epigenetic mechanisms might have evolved to dictate asymmetric cell division in diploid, higher eukaryotes as well.
机译:发展生物学中的一个关键问题是细胞不对称分裂的机制。不对称性对于产生多细胞生物发育所需的细胞多样性至关重要。作为潜在的机制之一,仅在裂殖酵母裂殖酵母中已经证明了改变交配/细胞类型的姐妹细胞之间的染色体传播的表观遗传学差异。由于技术原因,几乎不可能确定这种在多细胞生物的胚胎发育过程中起作用的机制的存在。我们的工作解决了这种表观遗传机制是否会导致最近测序的裂殖酵母日本血吸虫(GC含量为36%)与已研究透彻的粟酒裂殖酵母(GC含量为44%)高度不同的不对称细胞分裂。 。我们发现日本血吸虫的交配型基因座的基因组位置和DNA序列与粟酒裂殖酵母的差异很大。然而,值得注意的是,类似于粟酒裂殖酵母,日本血吸虫细胞在经历了两个连续的不对称细胞分裂循环之后会切换细胞/交配类型:四个“孙女”细胞中只有一个会切换。交配型基因座1上的DNA链特异性表观遗传印记引发了重组事件,这是细胞分化所必需的。因此S. pombe和S. japonicus交配系统提供了头两个例子,其中DNA的双螺旋结构的内在手性形成不对称细胞分裂的主要决定因素。我们的结果表明,这种不对称细胞分裂的独特的链特异性印迹/分离表观遗传机制是进化保守的。基于这些发现,我们推测DNA链特异的表观遗传机制可能已经演变为决定二倍体,高级真核生物中不对称细胞分裂的因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号