首页> 美国卫生研究院文献>Materials >Improvement of a Cohesive Zone Model for Fatigue Delamination Rate Simulation
【2h】

Improvement of a Cohesive Zone Model for Fatigue Delamination Rate Simulation

机译:疲劳脱层速率模拟内聚区模型的改进

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cohesive zone model (CZM) has found wide acceptance as a tool for the simulation of delamination in composites and debonding in bonded joints and various implementations of the cohesive zone model dedicated to fatigue problems have been proposed in the past decade. In previous works, the authors have developed a model based on cohesive zone to simulate the propagation of fatigue defects where damage acts on cohesive stiffness, with an initial (undamaged) stiffness representative of that of the entire thickness of an adhesive layer. In the case of a stiffness that is order of magnitude higher than the previous one (for instance, in the simulation of the ply-to-ply interface in composites), the model prediction becomes inaccurate. In this work, a new formulation of the model that overcomes this limitation is developed. Finite element simulations have been conducted on a mode I, constant bending (constant G)-loaded double cantilever beam (DCB) joint to assess the response of the new model with respect to the original one for varying initial stiffness K0 and cohesive strength σ0. The results showed that the modified model is robust with respect to changes of two orders of magnitude in initial stiffness and of a factor of two in σ0.
机译:内聚力区模型(CZM)已被广泛接受为模拟复合材料分层和粘结接头脱胶的工具,并且在过去十年中已提出了专门针对疲劳问题的内聚力区模型的各种实现方式。在先前的工作中,作者开发了一个基于内聚区的模型来模拟疲劳缺陷的传播,其中损伤作用于内聚刚度,其初始(未损坏)刚度代表着粘合剂层整个厚度。在刚度比上一个刚度高一个数量级的情况下(例如,在模拟复合材料中的层到层界面时),模型预测变得不准确。在这项工作中,开发了克服此限制的模型的新公式。在模式I,恒定弯曲(恒定G)加载的双悬臂梁(DCB)接头上进行了有限元模拟,以评估新模型相对于原始模型在变化的初始刚度K0和内聚强度σ0方面的响应。结果表明,改进的模型对于初始刚度的两个数量级变化和σ0的两倍因子变化具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号