首页> 美国卫生研究院文献>Materials >Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites
【2h】

Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites

机译:基于机理的SiCp / Al复合材料金刚石钻削刀具磨损的有限元模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials.
机译:这项工作的目的是分析SiCp / Al6063复合材料金刚石加工过程中宏观工具磨损的微观机制,并开发与主要磨损行为相关的基于机理的金刚石磨损模型。在钻孔过程中,含Cu的高体积分数SiCp / Al6063复合材料是金刚石工具的主要磨损机制,这涉及空气中Cu催化的金刚石-石墨转变导致热力学激活的物理化学磨损,以及高频刮擦硬质合金导致的机械驱动的磨料磨损工具表面的SiC增强。提出了分析性金刚石磨损模型,耦合的Usui磨料磨损模型和Arrhenius扩展石墨化磨损模型,并通过用户定义的子例程来实现,以估算工具的磨损。通过将组合的磨料-化学工具磨损子程序合并到3D钻孔的耦合热机械有限元模型中,可以估算SiCp / Al6063复合材料在金刚石钻孔中的工具磨损。通过比较数值模拟的刀具磨损形态和使用钎焊多晶金刚石(PCD)和化学气相沉积(CVD)金刚石涂层刀具钻孔后的实验观察到的结果,验证了所开发的用于再现金刚石刀具磨损的有限元模型的可行性和可靠性。在切削力,切屑和刀具磨损形态方面的实验结果和模拟结果相当吻合,表明开发的3D钻削有限元模型与金刚石刀具磨损估算子程序相结合,不仅可以提供切削力和切屑形状方面的更准确分析,而且还包括在钻孔SiCp / Al6063复合材料时的工具磨损行为。一旦经过验证和校准,所开发的金刚石刀具磨损模型与其他机加工FE模型一起可以轻松地扩展到使用各种金刚石刀具几何形状和其他切削不同工件材料的加工过程进行的刀具磨损演变研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号