首页> 美国卫生研究院文献>Materials >Glow Discharge in a High-Velocity Air Flow: The Role of the Associative Ionization Reactions Involving Excited Atoms
【2h】

Glow Discharge in a High-Velocity Air Flow: The Role of the Associative Ionization Reactions Involving Excited Atoms

机译:高速气流中的辉光放电:涉及激发原子的缔合电离反应的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A kinetic scheme for non-equilibrium regimes of atmospheric pressure air discharges is developed. A distinctive feature of this model is that it includes associative ionization with the participation of N(2D, 2P) atoms. The thermal dissociation of vibrationally excited nitrogen molecules and the electronic excitation from all the vibrational levels of the nitrogen molecules are also accounted for. The model is used to simulate the parameters of a glow discharge ignited in a fast longitudinal flow of preheated (T0 = 1800–2900 K) air. The results adequately describe the dependence of the electric field in the glow discharge on the initial gas temperature. For T0 = 1800 K, a substantial acceleration in the ionization kinetics of the discharge is found at current densities larger than 3 A/cm2, mainly due to the N(2P) + O(3P) → NO+ + e process; being the N(2P) atoms produced via quenching of N2(A3∑u+) molecules by N(4S) atoms. Correspondingly, the reduced electric field noticeably falls because the electron energy (6.2 eV) required for the excitation of the N2(A3∑u+) state is considerably lower than the ionization energy (9.27 eV) of the NO molecules. For higher values of T0, the associative ionization N(2D) + O(3P) → NO+ + e process (with a low–activation barrier of 0.38 eV) becomes also important in the production of charged particles. The N(2D) atoms being mainly produced via quenching of N2(A3∑u+) molecules by O(3P) atoms.
机译:建立了大气压空气排放非平衡状态的动力学方案。该模型的一个显着特征是它包括N( 2 D, 2 P)原子参与的缔合电离。还考虑了振动激发的氮分子的热解离和来自氮分子的所有振动能级的电子激发。该模型用于模拟在预热(T0 = 1800-2900 K)空气的快速纵向流动中点燃的辉光放电的参数。结果充分描述了辉光放电中的电场对初始气体温度的依赖性。对于T0 = 1800 K,在大于3 A / cm 2 的电流密度下,放电的电离动力学有明显的加速,这主要是由于N( 2 P)+ O( 3 P)→NO + + e过程;是通过N( 4 <消灭N2(A 3 ∑u + )分子产生的N( 2 P)原子/ sup> S)原子。相应地,减小的电场显着下降,因为激发N2(A 3 ∑u + )态所需的电子能量(6.2 eV)大大低于NO分子的电离能(9.27 eV)。对于更高的T0值,缔合电离N( 2 D)+ O( 3 P)→NO + + e过程(带有0.38 eV的低活化势垒)在带电粒子的生产中也很重要。 N( 2 D)原子主要是通过O( 3)淬灭N2(A 3 ∑u + )分子而产生的 P)原子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号