首页> 外文期刊>Plasma >Modelling of an Atmospheric–Pressure Air Glow Discharge Operating in High–Gas Temperature Regimes: The Role of the Associative Ionization Reactions Involving Excited Atoms
【24h】

Modelling of an Atmospheric–Pressure Air Glow Discharge Operating in High–Gas Temperature Regimes: The Role of the Associative Ionization Reactions Involving Excited Atoms

机译:高气体温度制度运行的大气压力空气辉光放电建模:涉及兴奋原子的关联电离反应的作用

获取原文
       

摘要

A model of a stationary glow-type discharge in atmospheric-pressure air operated in high-gas-temperature regimes (1000 K Tg 6000 K), with a focus on the role of associative ionization reactions involving N(2D,2P)-excited atoms, is developed. Thermal dissociation of vibrationally excited nitrogen molecules, as well as electronic excitation from all the vibrational levels of the nitrogen molecules, is also accounted for. The calculations show that the near-threshold associative ionization reaction, N(2D) + O(3P) NO+ + e, is the major ionization mechanism in air at 2500 K Tg 4500 K while the ionization of NO molecules by electron impact is the dominant mechanism at lower gas temperatures and the high-threshold associative ionization reaction involving ground-state atoms dominates at higher temperatures. The exoergic associative ionization reaction, N(2P) + O(3P) NO+ + e, also speeds up the ionization at the highest temperature values. The vibrational excitation of the gas significantly accelerates the production of N2(A3u+) molecules, which in turn increases the densities of excited N(2D,2P) atoms. Because the electron energy required for the excitation of the N2(A3u+) state from N2(X1g+, v) molecules (e.g., 6.2 eV for v = 0) is considerably lower than the ionization energy (9.27 eV) of the NO molecules, the reduced electric field begins to noticeably fall at Tg 2500 K. The calculated plasma parameters agree with the available experimental data.
机译:在大气压力空气的固定辉光型放电的模型在高气体温度状况(1000 [K]的Tg 6000 K)操作,重点在涉及N(2D,2P)激式原子缔电离反应的作用,开发。振动激发的氮分子的热解离,以及从所述氮分子的所有的振动能级的电子激发,也占。计算结果表明,在近阈缔电离反应,N(2D)+ O(3P)NO + + e为在空气中于2500K的Tg为4500 k中的主要电离机构而NO分子通过电子碰撞电离是主导在较低的气体温度和机制在较高温度下,涉及基态原子占主导地位的高阈值关联电离反应。在散热缔电离反应,N(2P)+ O(3P)NO + + E,也加速了在最高温度值的电离。的气体的振动激发显著加速生产N2(A3U +)的分子,这反过来又增加的兴奋N(2D,2P)原子密度。因为所需的N2(A3U +)状态从N2激励的电子能量(X1g +,v)的分子(例如,6.2伏特为V = 0)比NO分子的电离能(9.27 eV)的显着降低,则减少电场开始在Tg 2500显着地下降K.计算出的等离子体参数与实验数据一致。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号