首页> 美国卫生研究院文献>ACS Omega >In Situ Mg/MgO-Embedded Mesoporous Carbon Derivedfrom Magnesium 14-Benzenedicarboxylate Metal Organic Framework asSustainable Li–S Battery Cathode Support
【2h】

In Situ Mg/MgO-Embedded Mesoporous Carbon Derivedfrom Magnesium 14-Benzenedicarboxylate Metal Organic Framework asSustainable Li–S Battery Cathode Support

机译:原位生成的Mg / MgO嵌入介孔碳从14-苯二甲酸镁金属有机骨架可持续的锂锂电池阴极支持

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Development of advanced carbon cathode support with the ability to accommodate high sulfur (S) content as well as effective confinement of the sulfur species during charge–discharge is of great importance for sustenance of Li–S battery. A facile poly(vinylpyrrolidone)-assisted solvothermal method is reported here to prepare Mg–1,4-benzenedicarboxylate metal organic framework (MOF) from which mesoporous carbon is derived by thermal treatment, where the hexagonal sheetlike morphology of the parent MOF is retained. Existence of abundant pores of size 4 and 9 nm extended in three dimensions with zigzag mazelike channels helps trapping of S in the carbon matrix through capillary effect, resulting in high S loading. When tested as a cathode for lithium–sulfur battery, a reversible specific capacity of 1184 mAh g–1 could be achieved at 0.02 C. As evidenced by X-ray photoelectron spectroscopy, in situ generated Mg in the carbon structure enhances the conductivity, whereas MgO provides support to S immobilization through chemical interactions between Mg and sulfur species for surface polarity compensation, restricting the dissolution of polysulfideinto the electrolyte, the main cause for the “shuttle phenomenon”and consequent capacity fading. The developed cathode shows good electrochemicalstability with reversible capacities of 602 and 328 mAh g–1 at 0.5 and 1.0 C, respectively, with retentions of 64 and 67% after200 cycles. The simple MOF-derived strategy adopted here would helpdesign new carbon materials for Li–S cathode support.
机译:能够容纳高硫(S)含量以及在充放电期间有效限制硫种类的能力的高级碳阴极支架的开发对于维持锂锂电池至关重要。此处报道了一种简便的聚(乙烯基吡咯烷酮)辅助溶剂热法制备Mg-1,4-苯二甲酸金属有机骨架(MOF),通过热处理从中衍生出中孔碳,并保留了母体MOF的六角形片状形态。之字形迷宫状通道在三个维度上延伸的尺寸为4和9 nm的大量孔的存在有助于通过毛细作用将S捕集在碳基质中,从而导致高S负载。如果将其作为锂硫电池的阴极进行测试,则在0.02 C时可实现1184 mAh g –1 的可逆比容量。X射线光电子能谱证明,在电池中原位生成Mg。碳结构增强了电导率,而MgO通过Mg和硫物种之间的化学相互作用为表面固定化S提供了支持,从而限制了多硫化物的溶解进入电解液,是造成“穿梭现象”的主要原因从而导致容量下降。显影的阴极显示出良好的电化学性能稳定性,分别在0.5和1.0 C时可逆容量分别为602和328 mAh g –1 ,保留64%和67%200个周期。此处采用的基于MOF的简单策略会有所帮助设计用于Li–S阴极载体的新型碳材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号