首页> 美国卫生研究院文献>International Journal of Biomaterials >Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy
【2h】

Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy

机译:聚(甲基丙烯酸甲酯)微观结构上的细胞形态与表面能的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Whilst the significance of substrate topography as a regulator of cell function is well established, a systematic analysis of the principles underlying this is still unavailable. Here we evaluate the hypothesis that surface energy plays a decisive role in substrate-mediated modulation of cell phenotype by evaluation of cell behaviour on synthetic microstructures exhibiting pronounced differences in surface energy. These microstructures, specifically cubes and walls, were fabricated from a biocompatible base polymer, poly(methyl methacrylate), by variotherm injection molding. The dimensions of the cubes were 1 μm x 1 μm x 1 μm (height x width x length) with a periodicity of 1:1 and 1:5 and the dimensions of the walls 1 μm x 1 μm x 15 mm (height x width x length) with a periodicity of 1:1 and 1:5. Mold inserts were made by lithography and electroplating. The surface energy of the resultant microstructures was determined by static contact angle measurements. Light scanning microscopy of the morphology of NT2/D1 and MC3T3-E1 preosteoblast cells cultured on structured PMMA samples in both cases revealed a profound surface energy dependence. “Walls” appeared to promote significant cell elongation, whilst a lack of cell adhesion was observed on “cubes” with the lowest periodicity. Contact angle measurements on walls revealed enhanced surface energy anisotropy (55 mN/m max., 10 mN/m min.) causing a lengthwise spreading of the test liquid droplet, similar to cell elongation. Surface energy measurements for cubes revealed increased isotropic hydrophobicity (87° max., H2O). A critical water contact angle of ≤ 80° appears to be necessary for adequate cell adhesion. A “switch” for cell adhesion and subsequently cell growth could therefore be applied by, for example, adjusting the periodicity of hydrophobic structures. In summary cell elongation on walls and a critical surface energy level for cell adhesion could be produced for NT2/D1 and MC3T3-E1 cells by symmetrical and asymmetrical energy barrier levels. We, furthermore, propose a water-drop model providing a common physicochemical cause regarding similar cell/droplet geometries and cell adhesion on the investigated microstructures.
机译:尽管底物形貌作为细胞功能调节剂的重要性已得到充分确立,但仍无法对其基础原理进行系统分析。在这里,我们通过评估在表现出明显的表面能差异的合成微观结构上的细胞行为来评估表面能在底物介导的细胞表型调节中起决定性作用的假设。这些微结构,特别是立方体和壁,是由生物相容性基础聚合物聚甲基丙烯酸甲酯通过热注射成型制成的。立方体的尺寸为1μmx 1μmx 1μm(高度x宽度x长度),周期为1:1和1:5,壁的尺寸为1μmx 1μmx 15 mm(高度x宽度) x长度),周期为1:1和1:5。模具嵌件通过光刻和电镀制成。通过静态接触角测量来确定所得微结构的表面能。在两种情况下,在结构化的PMMA样品上培养的NT2 / D1和MC3T3-E1前成骨细胞的形态的光扫描显微镜显示了深深的表面能依赖性。 “墙”似乎促进了显着的细胞伸长,而在周期性最低的“立方体”上观察到细胞黏附的缺乏。墙壁上的接触角测量结果表明,表面能各向异性增强(最大55 mN / m,最小10 mN / m),导致测试液滴在长度方向上扩散,类似于细胞伸长。立方体的表面能测量显示各向同性疏水性增加(最大87°,H2O)。对于充分的细胞粘附来说,必须使水接触角≤80°。因此,可以通过例如调节疏水结构的周期性来施加用于细胞粘附和随后细胞生长的“开关”。总之,对于NT2 / D1和MC3T3-E1细胞,可以通过对称和不对称的能垒水平产生壁上的细胞伸长和细胞粘附的临界表面能水平。此外,我们提出了一种水滴模型,该模型提供了关于相似的细胞/液滴几何形状以及所研究的微结构上的细胞粘附的常见物理化学原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号