首页> 美国卫生研究院文献>Microorganisms >Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme
【2h】

Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme

机译:嗜温梭菌的泛纤维素组学:一个主题的变化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.
机译:细菌纤维素体是一种细胞外多酶机制,可通过降解植物细胞壁多糖来有效地解聚植物生物质。几种纤维素分解细菌已经进化出各种复杂的活性纤维素体模块化结构。我们在这里介绍了十二种嗜温梭菌物种的全基因组分析,包括经过充分研究和尚未描述的产纤维素酶的细菌。我们首先在这里报告纤维素酶成分的存在,从而扩展了我们对自然界中纤维素酶范式流行的认识。我们通过比较每个细菌物种中的纤维素基因簇和特定纤维素模块(黏着蛋白和码头蛋白)的保守序列特征,在它们的系统发生关系的背景上,探索了关键纤维素体组分的基因组组织。此外,我们对每种梭菌的碳水化合物降解酶的物种特异性库进行了比较分析,并将每种纤维素酶分类到一个特定的CAZy家族中,从而表明了其假定的酶活性(例如,纤维素酶,半纤维素酶和果胶酶)。 )。我们的工作为这一大类细菌提供了其多组分纤维素复合物蓝图的广泛概述。它们的支架蛋白簇和基于码头蛋白的识别残基的高度相似性表明它们是共同祖先,和/或广泛的水平基因转移,以及潜在的跨物种识别。此外,在几个基因组中包含大量dockerin的基因的零星空间组织表明,在给定细菌物种中,纤维素体范式的重要性。在这项工作中获得的信息可以直接利用,也可以通过基因工程和优化设计的纤维素系统进一步开发,以增强生物技术生物质的解构和生物燃料的生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号