您现在的位置:首页>美国卫生研究院文献>Cellular Reprogramming

期刊信息

  • 期刊名称:

    -

  • 刊频: Bimonthly
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<7/8>
145条结果
  • 机译 Trichostatin A处理克隆小鼠的基因表达谱归一化
    摘要:Cloning mammals by somatic cell nuclear transfer (SCNT) has become an established procedure, but the success rate remains low and gene expression abnormalities are also observed. In addition, SCNT pups exhibited an abnormal gene expression profile with a high degree of heterogeneity among individuals. Recently, we reported that somatic clones treated with trichostatin A (TSA) exhibited a significantly improved success rate, probably due to its effects on chromatin remodeling and histone modification in early embryos. Here we show that the TSA treatment also improves the long-term consistency of genome-wide gene expression regulation: the total number of genes commonly exhibiting up- or downregulation in the TSA clone pups decreased to half of the conventional SCNT pups, and the variation among individuals observed in the SCNT pups was also reduced to the level of the pups produced by the intracytoplasmic sperm injection (ICSI) method. Interestingly, the total gene expression profile of the TSA clones came to resemble that of the ICSI pups.
  • 机译 核移植胚胎来源的小鼠胚胎干细胞的比较分析。第二部分:基因调控
    摘要:In a mouse model nuclear transfer embryo-derived embryonic stem cell lines (ntESCs) of various genetic backgrounds and donor cell types were compared with reference ESCs and analyzed comprehensively at molecular level as a second part of a larger study. Expression profiles of ntESCs established by different NT-methods (piezoelectric microinjection or zona-free) were indistinguishable. However, expression profiling analyses identified differentially regulated genes between reference ESCs and ntESCs from different genetic backgrounds. A number of pluripotency and stemness marker genes significantly differed at the mRNA level between the cell lines. However, cluster and lineage analyses revealed that such differences had no effect on cell differentiation and cell fate. Regardless of the donor cell type, gene expression profiles of ntESCs were more similar to each other than to their counterpart fertilized embryo-derived ESCs of the same genotype. Overall, the results indicated that expression profile differences may be related to the genotype rather than to technical variations.
  • 机译 核移植胚胎来源的小鼠胚胎干细胞的比较分析。第一部分:细胞表征
    摘要:Embryonic stem cells derived from nuclear transfer embryos (ntESCs) are particularly valuable for regenerative medicine, as they are a patient-specific and histocompatible cell source for the treatment of varying diseases. However, currently, little is known about their cellular and molecular profile. In the present study, in a mouse model different donor cell-derived ntESCs from various genetic backgrounds were compared with reference ESCs and analyzed comprehensively at the cellular level. A number of pluripotency marker genes were compared by flow cytometry and immunocytochemistry analysis. Significant differences at the protein level were observed for POU5F1, SOX2, FGF4, NANOG, and SSEA-1. However, such differences had no effect on in vitro cell differentiation and cell fate: derivatives of the three germ layers were detected in all ntESC lines. The neural and cardiac in vitro differentiation revealed minor differences between the cell lines, both at the mRNA and protein level. Karyotype analyses and cell growth studies did not reveal any significant variations. Despite some differences observed, the present study revealed that ntESC lines had similar differentiation competences compared to other ESCs. The results indicate that the observed differences may be related to the genotype rather than to the nuclear transfer technology.
  • 机译 建立的胚泡和胚泡衍生的ES细胞系具有高度相似的基因表达谱,尽管它们对衍生培养条件有不同的要求
    摘要:The efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA). Preblastocyst-derived ES cell lines were normal in terms of pluripotency-related protein expression, and chromosome number. Also, preblastocyst-derived ES cell lines from various culture conditions showed pluripotency in vivo through teratoma analysis. Interestingly, ES cell lines produced from preblastocysts and blastocysts, regardless of the derivation culture conditions, are nearly indistinguishable by their global gene expression profiles.
  • 机译 MSC的发展定义:待解决问题的新见解
    摘要:Mesenchymal stem cells (MSCs) are a rare heterogeneous population of multipotent cells that can be isolated from many different adult and fetal tissues. They exhibit the capacity to give rise to cells of multiple lineages and are defined by their phenotype and functional properties, such as spindle-shaped morphology, adherence to plastic, immune response modulation capacity, and multilineage differentiation potential. Accordingly, MSCs have a wide range of promising applications in the treatment of autoimmune diseases, tissue repair, and regeneration. Recent studies have shed some light on the exact identity and native distribution of MSCs, whereas controversial results are still being reported, indicating the need for further review on their definition and origin. In this article, we summarize the important progress and describe some of our own relevant work on the developmental definition of MSCs.
  • 机译 体细胞诱导的超乙酰化作用,而不是低甲基化作用,可逆地积极影响牛体外克隆的胚泡生产效率
    摘要:5-Aza-2′-deoxycytidine (AzC), trichostatin A (TSA), and its natural mimetic, sodium butyrate (NaB), are antineoplastic drugs that can modify the epigenetic status of donor cells prior to somatic cell nuclear transfer (SCNT). In this study, we used fibroblast cells treated with these drugs to investigate the direct and indirect effects of induced changes in DNA methylation and acetylation of the lysine 9 residue of histone H3 (H3K9). Additionally, we assayed cellular characteristics (cell growth, cell proliferation, cell cycle progression, and apoptosis) and SCNT efficiency in response to these drugs as well as monitoring these effects 24 h after removing the drugs. We observed the following: (1) AzC, TSA, and NaB all showed dose-dependent effects on different cellular characteristics; (2) TSA and NaB induced H3K9 hyperacetylation accompanied by DNA hypermethylation, whereas AzC induced DNA hypomethylation with no effect on H3K9 hyperacetylation; (3) TSA and NaB improved cloning efficiency, whereas AzC reduced it; and (4) unlike AzC, the effects of TSA and NaB on cellular characteristics and SCNT efficiency were reversed following drug removal. Our results indicate that somatic cells treated with TSA and NaB show better survival and recovery rates following the removal of these drugs. Moreover, H3K9 hyperacetylation (induced with TSA and NaB), but not DNA hypomethylation (induced with AzC), favors cloning efficiency.
  • 机译 卵泡卵母细胞比输卵管卵母细胞更好地支持兔克隆的发育
    摘要:This study was conducted to determine the effect of rabbit oocytes collected from ovaries or oviducts on the developmental potential of nuclear transplant embryos. Donor nuclei were obtained from adult skin fibroblasts, cumulus cells, and embryonic blastomeres. Rabbit oocytes were flushed from the oviducts (oviductal oocytes) or aspirated from the ovaries (follicular oocytes) of superovulated does at 10, 11, or 12 h post-hCG injection. The majority of collected oocytes were still attached to the sites of ovulation on the ovaries. We found that follicular oocytes had a significantly higher rate of fusion with nuclear donor cells than oviductal oocytes. There was no difference in the cleavage rate between follicular and oviductal groups, but morula and blastocyst development was significantly higher in the follicular group than in the oviductal group. Two live clones were produced in follicular group using blastomere and cumulus nuclear donors, whereas one live clone was produced in the oviductal group using a cumulus nuclear donor. These results demonstrate that cloned rabbit embryos derived from follicular oocytes have better developmental competence than those derived from oviductal oocytes.
  • 机译 绵羊雄激素胚的高效生产和细胞鉴定
    摘要:The production of androgenetic embryos in large animals is a complex procedure. Androgenetic embryos have been produced so far only in cattle and sheep using pronuclear transfer (PT) between zygotes derived from in vitro fertilization (IVF) of previously enucleated oocytes. PT is required due to the poor developmental potential of androgenotes derived from IVF of enucleated oocytes. Here we compare the developemt to blastocyst of androgenetic embryos produced by the standard pronuclear transfer and by fertilization of oocytes enucleated in Ca2+/Mg2+-free medium, without pronuclear transfer. The enucleation in Ca2+/Mg2+-free medium abolished almost completely the manipulation-induced activation, significantly improving the development to blastocyst of the androgenetic embryos (IVF followed by PT; 18.6%: IVF only; 17.7%, respectively). Karyotype analysis of IVF revealed a similar proportion of diploid embryos in androgenetic and control blastocysts (35% and 36%, respectively), although mixoploid blastocysts were frequently observed in both groups (64%). Androgenotes had lower total cell numbers than control and parthenogenetic embryos, but more cells in ICM cells comparing to parthenogenotes (30.42 vs. 17.15%). Higher expression of the pluripotency-associated gene NANOG, and trophoblastic-specific gene CDX2, were also observed in androgenotes compared to parthenogenotes and controls. The global methytion profile of androgenetic embryos was comparable to controls, but was lower than parthenogenetic embryos. The cell composition and methylation pattern we have detected in monoparental sheep monoparental embryos are unprecedented, and differ considerably from the standard reference mouse embryos. Altogether, these finding indicate significant differences across species in the molecular mechanisms regulating early development of monoparental embryos, and highlights the need to study postimplantation development of androgenetic embryos in sheep.
  • 机译 5-Aza-2'-脱氧胞苷和曲古他汀A对克隆的牛胚囊基因表达和DNA甲基化状态的影响
    摘要:We previously found that treatment of both donor cells and early cloned embryos with combination of 5-aza-2′-deoxycytidine (5-aza-dC) and trichostatin A (TSA) significantly improve the in vitro and full-term development of nuclear transfer (NT) bovine embryos. To investigate how this treatment improved the epigenetic reprogramming of somatic cell nuclei, we compared the expression levels of DNA methylation-, chromatin structure-, and development-related genes in in vitro fertilized (IVF group), NT (C-NT group), and 5-aza-dC and TSA-treated NT (T-NT group) single blastocyst using quantitative real-time PCR. We also compared the DNA methylation status of satellite I among three groups using bisulfite sequencing analysis and combined bisulfite restriction analysis (COBRA). There were significantly lower levels of DNMT1, DNMT3b, HDAC2, and IGF2 transcripts in T-NT blastocysts than in C-NT blastocysts, whereas the relative abundance of OCT4 and SOX2 mRNA was significantly increased in T-NT blastocysts compared to C-NT blastocysts. In addition, the treatment also reduced the DNA methylation levels of NT blastocysts on satellite I sequence. It is likely that TSA may act synergistically with 5-aza-dC to exert such modifications in gene expression and DNA methylation, subsequently enhancing developmental potential (in vitro and full-term) of treated cloned embryos.
  • 机译 一个月大的克隆猪的脑,肾和肺中基因表达谱的改变
    摘要:Although numerous mammalian species have been successfully cloned by somatic cell nuclear transfer (SCNT), little is known about gene expression of cloned pigs by SCNT. In the present study, expression profiles of 1-month-old cloned pigs generated from fetal fibroblasts (n = 5) were compared to those of age-matched controls (n = 5) using a 13K oligonucleotide microarray. The brain, kidney, and lung were chosen for microarray analysis to represent tissues from endoderm, mesoderm, and ectoderm in origin. In clones, 179 and 154 genes were differentially expressed in the kidney and the lung, respectively (fold change >2, p < 0.05, false discovery rate = 0.05), whereas only seven genes were differentially expressed in the brain of clones. Functional analysis of the differentially expressed genes revealed that they were enriched in diabetic nephropathy in the kidney, delayed alveologenesis as well as downregulated MAPK signaling pathways in the lung, which was accompanied with collapsed alveoli in the histological examination of the lung. To evaluate whether the gene expression anomalies are associated with changes in DNA methylation, global concentration of the methylated cytosine was measured in lung DNA by HPLC. Clones were significantly hypermethylated (5.72%) compared to the controls (4.13%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed genes, MYC and Period 1 (PER1), however, did not show any differences in the degree of DNA methylation between controls and clones. Together, these findings demonstrate that cloned pigs have altered gene expression that may potentially cause organ dysfunction.
  • 机译 SAF-A通过启动子结合在ES细胞中Oct4的转录调控中发挥作用。
    摘要:Methodologies to reprogram somatic cells into patient-specific pluripotent cells, which could potentially be used in personalized drug discovery and cell replacement therapies, are currently under development. Oct4 activation is essential for successful reprogramming and pluripotency of embryonic stem (ES) cells, albeit molecular details of Oct4 activation are not completely understood. Here we report that endogenous SAF-A is involved in regulation of Oct4 expression, binds the Oct4 proximal promoter in ES cells, and dissociates from the promoter upon early differentiation induced by LIF withdrawal. Depletion of SAF-A decreases Oct4 expression even in the presence of LIF, and results in an increase of the mesodermal marker Brachyury. The overexpression of wild-type human SAF-A rescues the mouse knock-down phenotype and results in increased Oct4 level. We also demonstrate that endogenous SAF-A interacts with the C-terminal domain (CTD) of endogenous RNA polymerase II and that the interaction is independent of CTD phosphorylation and mRNA. Moreover, we show that SAF-A exist in complexes with transcription factors Sox2 and Oct4 as well as STAT3 in ES cells. The number of endogenous SAF-A:Oct4 and SAF-A:Sox2 complexes decreases upon LIF depletion. These discoveries allow us to propose a model for activation of Oct4 transcription.
  • 机译 克隆的尤加坦微型猪of尾脊髓损伤模型的建立,用于细胞移植研究
    摘要:Research into transplantation strategies to treat spinal cord injury (SCI) is frequently performed in rodents, but translation of results to clinical patients can be poor and a large mammalian model of severe SCI is needed. The pig has been considered an optimal model species in which to perform preclinical testing, and the Yucatan minipig can be cloned successfully utilizing somatic cell nuclear transfer (SCNT). However, induction of paralysis in pigs poses significant welfare and nursing challenges. The present study was conducted to determine whether Yucatan SCNT clones could be used to develop an SCI animal model for cellular transplantation research. First, we demonstrated that transection of the sacrocaudal spinal cord in Yucatan SCNT clones produces profound, quantifiable neurological deficits restricted to the tail. We then established that neurospheres could be isolated from brain tissue of green fluorescence protein (GFP) transfected SCNT clones. Finally, we confirmed survival of transplanted GFP-expressing neural stem cells in the SCI lesion and their differentiation into glial and neuronal lineages for up to 4 weeks without immunosuppression. We conclude that this model of sacrocaudal SCI in Yucatan SCNT clones represents a powerful research tool to investigate the effect of cellular transplantation on axonal regeneration and functional recovery.
  • 机译 小鼠胚胎成纤维细胞诱导的多能干细胞的细胞和分子谱之间的差异。
    摘要:Induced pluripotent stem (iPS) cells are a new alternative for the development of patient-specific stem cells, and the aim of this study was to determine whether differences exist between the cellular and molecular profiles of iPS cells, generated using lentiviral vectors, compared to ES cells. The lentiviral infection efficiency differed according to the method of cell culture (adherent cells: 0.085%; suspended cells: 0.785%). Six iPS cell lines exhibited typical ES cell morphology and marker expression, but varied in their in vitro/in vivo differentiation ability. Global gene transcription analysis revealed that core pluripotency genes were expressed at lower levels in iPS cell lines compared to D3-ES cells (Pou5f1: ×1.6∼2.2-fold, Sox2: ×2.58∼10.0-fold, Eras: ×1.08∼2.54-fold, Dppa5a: ×1.04∼1.41-fold), while other genes showed higher expression in iPS cells (Lin28: ×1.43∼2.33-fold; Dnmt3b: ×1.33∼2.64-fold). This pattern was repeated in a survey of specific functional groups of genes (surface markers, cell death, JAK–STAT and P13K–AKT signaling pathways, endothelial, cardiovascular, and neurogenesis genes). Among the iPS cell lines examined, only two showed similar characteristics to ES cells. These results demonstrated that, in addition to cellular characterization, the numerical evaluation of gene expression using DNA microarrays might help to identify the stem cell stability and pluripotency of iPS cells.
  • 机译 ROCK抑制作用在定义的,无饲养层和无血清的系统中促进人类诱导的多能干细胞的产生
    摘要:Human-induced pluripotent stem cells (iPSCs) generated from human adult somatic cells through reprogramming hold great promises for future regenerative medicine. However, exposure of human iPSCs to animal feeder and serum in the process of their generation and maintenance imposes risk of transmitting animal pathogens to human subjects, thus hindering the potential therapeutic applications. Here, we report the successful generation of human iPSCs in a feeder-independent culture system with defined factors. Two stable human iPSC lines were established from primary human dermal fibroblasts of two healthy volunteers. These human iPSCs expressed a panel of pluripotency markers including stage-specific embryonic antigen (SSEA)-4, tumor-rejection antigen (TRA)-1-60, TRA-1-81, and alkaline phosphatase, while maintaining normal karyotypes and the exogenous reprogramming factors being silenced. In addition, these human iPSCs can differentiate along lineages representative of the three embryonic germ layers upon formation of embryoid bodies, indicating their pluripotency. Furthermore, subcutaneous transplantation of these cells into immunodeficient mice resulted in teratoma formation in 6 to 8 weeks. Our findings are an important step toward generating patient-specific iPSCs in a more clinically compliant manner by eliminating the need of animal feeder cells and animal serum.
  • 机译 死去的新生克隆猪脑,肾和肺中基因表达谱的改变
    摘要:Limited studies have been published analyzing the gene expression patterns of cloned pigs. We compared the expression profiles of brain, kidney, and lung tissues, representing each of the three germ layers, of deceased neonatal cloned pigs with those of age-matched controls using a 13K oligonucleotide microarray. We found 42 (0.7% of total genes analyzed), 178 (2.9%), and 121 (1.9%) genes differentially expressed in the brain, kidney, and lung of clones, respectively, when compared with the corresponding organs from controls (fold change >1.5, p < 0.05, false discovery rate (FDR) = 0.05). These expression aberrations could potentially cause the following pathological anomalies in clones: diabetic nephropathy in the kidney and dysregulated surfactant homeostasis in the lung. Interestingly, upregulated expression of genes belonging to the MAPK pathway was observed in all three organs. To investigate whether the differences in levels of gene expression were caused by differential DNA methylation, the global DNA methylation level was measured by high-performance liquid chromatography. In controls, global concentration of methylated cytosine was 5.35%, whereas clones had significantly hypomethylated genomic DNA (4.57%). Bisulfite-pyrosequencing analyses of the promoter regions of differentially expressed candidate genes, c-MYC, Period 1 (PER1), Cathepsin L (CTSL), and Follistatin (FS), however, did not show any differences in the degree of DNA methylation between controls and clones. Our findings demonstrate that deceased neonatal cloned pigs have considerable gene expression abnormalities, which may have contributed to the death of the animals.
  • 机译 将亨廷顿猴子皮肤细胞重编程为多能干细胞
    摘要:Induced pluripotent Huntington's disease monkey stem cells (rHD-iPSCs) were established by the overexpression of rhesus macaque transcription factors (Oct4, Sox2, and Klf4) in transgenic Huntington's monkey skin fibroblasts. The rHD-iPSCs were pluripotent and capable of differentiating into neuronal cell types in vitro and developed teratoma in immune compromised mice. We also demonstrated the upregulation of endogenous Oct4 and Sox2 after successful reprogramming to pluripotency in rHD-iPSCs, which was not expressed in skin fibroblasts. rHD-iPSCs also developed cellular features comparable to Huntington's disease (HD), including the accumulation of mutant huntingtin (htt) aggregate and the formation of intranuclear inclusions (NIs) paralleling neural differentiation in vitro. Induced pluripotent stem cells from transgenic HD monkeys open a new era of nonhuman primate modeling of human diseases. rHD-iPSCs that develop key HD cellular features and parallel neural differentiation can be a powerful platform for investigating the developmental impact on HD pathogenesis and developing new therapies, which can be evaluated in HD monkeys from whom the rHD-iPSCs were derived.
  • 机译 人胚胎干细胞来源的成骨细胞样细胞的扩增和鉴定
    摘要:Human embryonic stem cells (hESCs) have the potential to serve as a repository of cells for the replacement of damaged or diseased tissues and organs. However, to use hESCs in clinically relevant scenarios, a large number of cells are likely to be required. The aim of this study was to demonstrate an alternative cell culture method to increase the quantity of osteoblast-like cells directly derived from hESCs (hESCs-OS). Undifferentiated hESCs were directly cultivated and serially passaged in osteogenic medium (hESC-OS), and exhibited similar expression patterns of osteoblast-related genes to osteoblast-like cells derived from mesenchymal stem cells derived from hESCs (hESCs-MSCs-OS) and human bone marrow stromal cells (hBMSCs-OS). In comparison to hESCs-MSCs-OS, the hESCs-OS required a shorter expansion time to generate a homogenous population of osteoblast-like cells that did not contain contaminating undifferentiated hESCs. Identification of human specific nuclear antigen (HuNu) in the newly formed bone in calvarial defects verified the role of the transplanted hESCs-OS as active bone forming cells in vivo. Taken together, this study suggests that osteoblast-like cells directly derived from hESCs have the potential to serve as an alternative source of osteoprogenitors for bone tissue engineering strategies.
  • 机译 mTOR介导的p70 S6K激活诱导多能人类胚胎干细胞分化。
    摘要:Deciding to exit pluripotency and undergo differentiation is of singular importance for pluripotent cells, including embryonic stem cells (ESCs). The molecular mechanisms for these decisions to differentiate, as well as reversing those decisions during induced pluripotency (iPS), have focused largely on transcriptomic controls. Here, we explore the role of translational control for the maintenance of pluripotency and the decisions to differentiate. Global protein translation is significantly reduced in hESCs compared to their differentiated progeny. Furthermore, p70 S6K activation is restricted in hESCs compared to differentiated fibroblast-like cells. Disruption of p70 S6K-mediated translation by rapamycin or siRNA knockdown in undifferentiated hESCs does not alter cell viability or expression of the pluripotency markers Oct4 and Nanog. However, expression of constitutively active p70 S6K, but not wild-type p70 S6K, induces differentiation. Additionally, hESCs exhibit high levels of the mTORC1/p70 S6K inhibitory complex TSC1/TSC2 and preferentially express more rapamycin insensitive mTORC2 compared to differentiated cells. siRNA-mediated knockdown of both TSC2 and Rictor elevates p70 S6K activation and induces differentiation of hESCs. These results suggest that hESCs tightly regulate mTORC1/p70 S6K-mediated protein translation to maintain a pluripotent state as well as implicate a novel role for protein synthesis as a driving force behind hESC differentiation.
  • 机译 猪皮肤衍生祖细胞(SKP)球和神经球:通过微阵列分析鉴定出的不同“干性”
    摘要:Skin-derived progenitors (SKP) are neural crest derived and can generate neural and mesodermal progeny in vitro, corresponding to the multipotency of neural crest stem cells. Likewise, neural stem/progenitor cells (displaying as neurospheres) have the capacity of self-renewing, and can produce most phenotypes in the nervous system. Both form spheres when cultured with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Although the “stemness” of neural stem/progenitor cells has been extensively investigated, the molecular comparison of SKP spheres and neurospheres has not been elucidated. Here, SKP spheres and neurospheres from the same individual porcine fetuses were isolated with the same culture medium, and the multipotency was tested by in vitro differentiation assays. Microarray analysis was used to illustrate the “stemness” of SKP spheres and neurospheres. The upregulated genes that were in common in the SKP spheres and neurospheres are involved in ribosome, tight junction, gap junction, cell communication, calcium signaling, ErbB signaling, JAK–STAT signaling, MAPK signaling, etc. The differentially expressed genes between SKP spheres and neurospheres are mainly involved in ECM–receptor interaction and the transforming growth factor-beta (TGF-β) signaling pathway. Finally, treatment with leukemia inhibitory factor (LIF) or MEK inhibitor results in a distinctive impact on the “stemness” and differentiation genes of SKP spheres and neurospheres. Thus, the cell-intrinsic genetic program may contribute to the innate “stemness” of SKP spheres and neurospheres in a similar local microenvironment.
  • 机译 羊水细胞比成人细胞更有效地重编程为多能性
    摘要:Recently, cultured human adult skin cells were reprogrammed to induced pluripotent stem (iPS) cells, which have characteristics similar to human embryonic stem (hES) cells. Patient-derived iPS cells offer genetic and immunologic advantages for cell and tissue replacement or engineering. The efficiency of generating human iPS cells has been very low; therefore an easily and efficiently reprogrammed cell type is highly desired. Here, we demonstrate that terminally differentiated human amniotic fluid (AF) skin cells provide an accessible source for efficiently generating abundant-induced pluripotent stem (AF-iPS) cells. By induction of pluripotency with the transcription factor quartet (OCT3/4, SOX2, KLF4, and c-MYC) the terminally differentiated, cultured AF skin cells formed iPS colonies approximately twice as fast and yielded nearly a two-hundred percent increase in number, compared to cultured adult skin cells. AF-iPS cells were identical to hES cells for morphological and growth characteristics, antigenic stem cell markers, stem cell gene expression, telomerase activity, in vitro and in vivo differentiation into the three germ layers and for their capacity to form embryoid bodies (EBs) and teratomas. Our findings provide a biological interesting conclusion that these fetal AF cells are more rapidly, easily, and efficiently reprogrammed to pluripotency than neonatal and adult cells. AF-iPS cells may have a “young,” more embryonic like epigenetic background, which may facilitate and accelerate pluripotency. The ability to efficiently and rapidly reprogram terminally differentiated AF skin cells and generate induced pluripotent stem cells provides an abundant iPS cell source for various basic studies and a potential for future patient-specific personalized therapies.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号