首页> 美国卫生研究院文献>Cell Research >A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis
【2h】

A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis

机译:一种新的机制奠定了凋亡过程中切丁酶核糖核酸酶向脱氧核糖核酸酶的胱天蛋白酶依赖性转化的基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During C. elegans apoptosis, the dicer ribonuclease (DCR-1) is cleaved by the cell death protease CED-3 to generate a truncated DCR-1 (tDCR-1) with one and a half ribonuclease III (RNase III) domains, converting it into a deoxyribonuclease (DNase) that initiates apoptotic chromosome fragmentation. We performed biochemical and functional analyses to understand this unexpected RNase to DNase conversion. In full-length DCR-1, tDCR-1 DNase activity is suppressed by its N-terminal DCR-1 sequence. However, not all the sequence elements in the N-terminal DCR-1 are required for this suppression. Our deletion analysis reveals that a 20-residue α-helix sequence in DCR-1 appears to define a critical break point for the sequence required for suppressing tDCR-1 DNase activity through a structure-dependent mechanism. Removal of the N-terminal DCR-1 sequence from tDCR-1 activates a DNA-binding activity that also requires the one half RNase IIIa domain, and enables tDCR-1 to process DNA. Consistently, structural modeling of DCR-1 and tDCR-1 suggests that cleavage of DCR-1 by CED-3 may cause a conformational change that allows tDCR-1 to bind and process DNA, and may remove steric hindrance that blocks DNA access to tDCR-1. Moreover, a new DNase can be engineered using different RNase III domains, including the one from bacterial RNase III. Our results indicate that very distantly related RNase III enzymes have the potential to cleave DNA when processed proteolytically or paired with an appropriate partner that facilitates binding to DNA. We suggest the possibility that this phenomenon may be extrapolated to other ribonucleases.
机译:秀丽隐杆线虫凋亡期间,切丁酶核糖核酸酶(DCR-1)被细胞死亡蛋白酶CED-3裂解,生成具有一个半核糖核酸酶III(RNase III)结构域的截短的DCR-1(tDCR-1),将其转化为脱氧核糖核酸酶(DNase),从而引发凋亡染色体片段化。我们进行了生化和功能分析,以了解这种意外的RNase到DNase的转化。在全长DCR-1中,tDCR-1 DNase活性被其N端DCR-1序列抑制。但是,此抑制并不需要N端DCR-1中的所有序列元素。我们的缺失分析表明,DCR-1中有20个残基的α-螺旋序列似乎为通过结构依赖性机制抑制tDCR-1 DNase活性所需的序列定义了一个关键的断裂点。从tDCR-1去除N端DCR-1序列会激活DNA结合活性,这也需要一半的RNase IIIa结构域,并使tDCR-1能够处理DNA。一致地,DCR-1和tDCR-1的结构模型表明CED-3对DCR-1的切割可能引起构象变化,从而使tDCR-1结合并加工DNA,并可能消除阻止DNA进入tDCR的位阻。 -1。此外,可以使用不同的RNase III域(包括来自细菌RNase III的域)来设计一种新的DNase。我们的结果表明,当蛋白水解处理或与促进与DNA结合的合适伴侣配对时,非常遥远相关的RNase III酶具有切割DNA的潜力。我们建议将这种现象外推到其他核糖核酸酶的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号