首页> 美国卫生研究院文献>Cell Regulation >Regulation of cytoskeletal dynamics and transport
【2h】

Regulation of cytoskeletal dynamics and transport

机译:调节细胞骨架动力学和运输

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The “Regulation of Cytoskeletal Dynamics and Transport” Minisymposium incorporated exciting new research on intracellular filaments. The talks delved into the regulation of filament dynamics, modes of cross-talk, and motor protein function ranging from the single-molecule to the cellular level. (Gladfelter lab, University of North Carolina–Chapel Hill) presented biophysical mechanisms controlling septin polymerization by combining in vitro reconstitution, cell-free extracts, and physical modeling approaches. (Munro and Kovar labs, University of Chicago; Wignall lab, Northwestern University) used similar techniques in addition to in vivo observations in to demonstrate that the alignment of actin filaments in the cytokinetic ring requires templated elongation of new actin filaments within the ring, mediated by plastin, a rapidly bundling actin-binding protein. (Goode lab, Brandeis University) used bulk pyrene assays and TIRF microscopy to show that EB1 directly inhibits the actin-nucleation capabilities of adenomatous polyposis coli (APC), revealing an unanticipated role for EB1 in actin assembly and suggesting that EB1–APC interactions in cells play roles in governing microtubule–actin cross-talk. Using in vitro assays combined with laser microsurgery and microfluidics, (Akhmanova lab, Utrecht University, Netherlands) showed that a microtubule catastrophe suppression factor, CLASP, stimulates microtubule lattice repair, thereby restoring microtubule integrity. Continuing the discussion of microtubule-associated proteins (MAPs), (University of California, Davis) used in vitro reconstitution of purified motor proteins and nonenzymatic MAPs to demonstrate that MAPs exhibit distinct influences on the motility of three classes of microtubule motors, kinesin-1, kinesin-3, and dynein, suggesting a role for the MAP code in directing motor transport in cells. Also related to transport, (Bonifacino lab, NIH/NICHD) showed that the adaptor protein SKIP/PLEKHM2 is autoinhibited by an intramolecular interaction between its N- and C-terminal regions and that this interaction is relieved by the binding of the small GTPase, ARL8, enabling SKIP to couple lysosomes to kinesin-1 for movement toward the cell periphery. (Barres lab, Stanford University) demonstrated that mRNA transport is important for myelination in a mouse model lacking the 3′UTR of Mbp (myelin basic protein). These mice display tremors and are hypomyelinated, and their oligodendrocytes fail to transport mRNA properly in 3D cultures. The final three talks focused on cytoskeletal mechanisms related to axon outgrowth and guidance. (University of North Carolina–Chapel Hill) described  how the actin polymerase VASP undergoes reversible nondegradative ubiquitination, mediated by a pair of E3 ubiquitin ligases, TRIM9 and TRIM67. VASP regulation is necessary for responses of filopodia, growth cones, and axons to the guidance cue netrin-1. (Boston University) discussed how phosphorylation of the microtubule plus-end–tracking protein, TACC3, modulates its ability to bind to microtubules and also affects how it promotes axon outgrowth. Finally, (University of Virginia) described new work on the poorly understood intermediate filament, nestin, in neurons. Her group discovered that nestin selectively promotes the phosphorylation of the MAP, DCX, by the neuronal kinase cdk5, affecting growth cone morphology and responsiveness to guidance cues.
机译:在“细胞骨架动力学和运输调控”微型专题讨论会上,对细胞内细丝进行了令人兴奋的新研究。讨论涉及细丝动力学的调节,串扰的模式以及从单分子到细胞水平的运动蛋白功能。 (北卡罗来纳大学教堂山分校的格拉德费尔特实验室)介绍了通过结合体外重构,无细胞提取物和物理建模方法来控制Septin聚合的生物物理机制。 (芝加哥大学的Munro和Kovar实验室;西北大学的Wignall实验室)除了在体内观察到的数据外,还使用了类似的技术来证明细胞动力学环中肌动蛋白丝的排列需要环内新肌动蛋白丝的模板化延长,这是介导的。 plastin是一种快速捆绑的肌动蛋白结合蛋白。 (布兰代斯大学古德实验室)使用bulk分析和TIRF显微镜检查表明EB1直接抑制了腺瘤性息肉病大肠杆菌(APC)的肌动蛋白成核能力,从而揭示了EB1在肌动蛋白装配中的意外作用,并暗示了EB1–APC相互作用细胞在控制微管与肌动蛋白的相互作用中发挥作用。使用结合激光显微外科手术和微流控技术的体外测定法(荷兰乌特勒支大学Akhmanova实验室)显示,微管巨灾抑制因子CLASP刺激微管晶格修复,从而恢复微管完整性。继续讨论微管相关蛋白(MAPs),(加利福尼亚大学戴维斯分校)采用体外重组纯化的运动蛋白和非酶促MAPs来证明MAPs对三类微管运动蛋白kinesin-1的运动性具有明显的影响。 ,kinesin-3和dynein,提示MAP代码在指导细胞内马达运动中的作用。同样与运输有关(Bonifacino实验室,NIH / NICHD)表明,衔接子蛋白SKIP / PLEKHM2被其N端和C端区域之间的分子内相互作用所自动抑制,并且这种相互作用被小GTPase的结合所缓解, ARL8,使SKIP能够将溶酶体与kinesin-1结合,从而向细胞外围移动。 (斯坦福大学Barres实验室)证明,在缺乏Mbp(髓鞘碱性蛋白)3'UTR的小鼠模型中,mRNA转运对于髓鞘形成很重要。这些小鼠表现出震颤并具有低髓鞘作用,其少突胶质细胞无法在3D培养物中正确运输mRNA。最后的三个演讲集中在与轴突生长和指导有关的细胞骨架机制上。 (北卡罗来纳大学教堂山分校)描述了肌动蛋白聚合酶VASP如何通过一对E3泛素连接酶TRIM9和TRIM67介导可逆的非降解泛素化。 VASP调节对于丝状伪足,生长锥和轴突对cue netrin-1指导的反应是必要的。 (波士顿大学)讨论了微管正向末端追踪蛋白TACC3的磷酸化如何调节其与微管结合的能力,还影响了其如何促进轴突的生长。最后,(弗吉尼亚大学)描述了有关神经元中间丝Nestin的鲜为人知的新工作。她的小组发现Nestin通过神经元激酶cdk5选择性促进MAP,DCX的磷酸化,从而影响生长锥的形态和对引导信号的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号