首页> 美国卫生研究院文献>Cell Regulation >Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae
【2h】

Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae

机译:长期饥饿会导致酿酒酵母中脂质生物合成酶的可逆螯合和细胞器重组

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum–, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum–mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.
机译:细胞通过调节多种过程来适应改变养分利用率的过程,包括酶的空间隔离,其生理意义尚存争议。据称这些酶沉积物代表错误折叠的蛋白质,蛋白质存储或具有优异酶活性的复合物的聚集体。我们在酿酒酵母中监测了葡萄糖耗竭后脂质生物合成酶的空间分布。几种不同的胞质,内质网和线粒体定位的脂质生物合成酶被隔离到不同的病灶中。使用关键酶脂肪酸合成酶(FAS)作为模型,我们显示FAS病灶代表活性酶组装。饥饿时,磷脂合成仍然保持活性,尽管有一些变化,这意味着其他形成病灶的脂质生物合成酶也可能保留活性。因此,螯合可限制酶彼此之间及其底物之间的通路,从而调节代谢通量。酶的螯合与可逆的剧烈线​​粒体重组以及内质网-线粒体相遇结构以及液泡和线粒体贴片细胞器接触部位的伴随损失相吻合,这反映在磷脂谱的质和量变化中。这突显了一种新的机制,该机制可调节脂质稳态,而不会深刻影响所涉及酶的活性状态,因此,进入有利的生长条件后,细胞可以通过重新定位其酶来快速改变脂质通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号