您现在的位置:首页>美国卫生研究院文献>Biomedical Optics Express

期刊信息

  • 期刊名称:

    -

  • 刊频: Monthly
  • NLM标题: Biomed Opt Express
  • iso缩写: -
  • ISSN: -
  • 排序:
  • 显示:
  • 每页:
全选(0
<10/20>
3578条结果
  • 机译 太赫兹光谱法定量分析液体中的同型半胱氨酸
    摘要:Homocysteine (C H NO S) is a variant of the amino acid cysteine, a harmful substance to the human body, which is closely related to cardiovascular disease, senile dementia, fractures, et al. At present, conventional methods for detecting homocysteine in biological samples include high performance liquid chromatography (HPLC), fluorescence polarization immunoassay (FPIA), and enzymatic cycling methods. These methods have the disadvantages of being time-consuming, sample-losing, chemical reagent-using and operation-cumbersome. Here, we present a method for the quantitative detection of homocysteine in liquid based on terahertz spectroscopy. Considering the strong absorption of water for terahertz beam, we also put forward a pretreatment method for drying samples at low temperature. These methods make the detection limit for homocysteine reach 10 µmol/L (human normal concentration). Based on the linear relationship between the homocysteine concentration and the THz spectral intensity, we can successfully achieve quantitative, accurate and real-time detection of homocysteine. As compared to Raman spectroscopy, the correlation coefficient of THz spectrum ( = 0.99809) is much larger than that of the Raman spectrum (  = 0.80022, = 0.8028). These results are greatly useful for the accurate evaluation of pathological stage.
  • 机译 远程扫描可在宽视场显微镜和全视场OCT中获得超大视场
    摘要:Imaging specimens over large scales and with a sub-micron resolution is instrumental to biomedical research. Yet, the number of pixels to form such an image usually exceeds the number of pixels provided by conventional cameras. Although most microscopes are equipped with a motorized stage to displace the specimen and acquire the image tile-by-tile, we propose an alternative strategy that does not require to move any part in the sample plane. We propose to add a scanning mechanism in the detection unit of the microscope to collect sequentially different sub-areas of the field of view. Our approach, called remote scanning, is compatible with all camera-based microscopes. We evaluate the performances in both wide-field microscopy and full-field optical coherence tomography and we show that a field of view of 2.2 × 2.2 mm with a 1.1 m resolution can be acquired. We finally demonstrate that the method is especially suited to image motion-sensitive samples and large biological samples such as millimetric engineered tissues.
  • 机译 使用选择性平面照明显微镜对患者源性类器官的无标记氧化还原成像
    摘要:High-throughput drug screening of patient-derived organoids offers an attractive platform to determine cancer treatment efficacy. Here, selective plane illumination microscopy (SPIM) was used to determine treatment response in organoids with endogenous fluorescence from the metabolic coenzymes NAD(P)H and FAD. Rapid 3-D autofluorescence imaging of colorectal cancer organoids was achieved. A quantitative image analysis approach was developed to segment each organoid and quantify changes in endogenous fluorescence caused by treatment. Quantitative analysis of SPIM volumes confirmed the sensitivity of patient-derived organoids to standard therapies. This proof-of-principle study demonstrates that SPIM is a powerful tool for high-throughput screening of organoid treatment response.
  • 机译 光热可调法布里-珀罗光纤干涉仪,用于光声介观
    摘要:An optical fiber based Fabry-Pérot interferometer whose resonant wavelength can be dynamically tuned was designed and realized for photoacoustic mesoscopy. The optical path length (OPL) of the Fabry-Pérot cavity can be modulated by a photothermal heating process, which was achieved by adjusting the power of a 650 nm heating laser. The optical heating process can effectively change the thickness and refractive index of the polymer spacer of the sensor cavity. The robustness of the sensor can be greatly improved by proper packaging. The interferometer was interrogated by a relatively cheap wavelength-fixed 1550 nm laser for broadband and sensitive ultrasound detection, eliminating the requirement for an expensive tunable interrogation laser. The sensing module was then integrated into a photoacoustic mesoscopic imaging system. Two phantom imaging experiments and an imaging experiment demonstrated the capability of such a miniature sensor. The interferometer has an acoustic detection bandwidth of up to 30 MHz and a noise equivalent pressure of 40 mPa/Hz (i.e., 220 Pa over the full detection bandwidth). The new tuning mechanism and the batch-production compatibility of the sensor holds promises for commercialization and parallelized detection.
  • 机译 深度学习通过宽视场显微镜进行全彩色光学切片成像
    摘要:Wide-field microscopy (WFM) is broadly used in experimental studies of biological specimens. However, combining the out-of-focus signals with the in-focus plane reduces the signal-to-noise ratio (SNR) and axial resolution of the image. Therefore, structured illumination microscopy (SIM) with white light illumination has been used to obtain full-color 3D images, which can capture high SNR optically-sectioned images with improved axial resolution and natural specimen colors. Nevertheless, this full-color SIM (FC-SIM) has a data acquisition burden for 3D-image reconstruction with a shortened depth-of-field, especially for thick samples such as insects and large-scale 3D imaging using stitching techniques. In this paper, we propose a deep-learning-based method for full-color WFM, , FC-WFM-Deep, which can reconstruct high-quality full-color 3D images with an extended optical sectioning capability directly from the FC-WFM -stack data. Case studies of different specimens with a specific imaging system are used to illustrate this method. Consequently, the image quality achievable with this FC-WFM-Deep method is comparable to the FC-SIM method in terms of 3D information and spatial resolution, while the reconstruction data size is 21-fold smaller and the in-focus depth is doubled. This technique significantly reduces the 3D data acquisition requirements without losing detail and improves the 3D imaging speed by extracting the optical sectioning in the depth-of-field. This cost-effective and convenient method offers a promising tool to observe high-precision color 3D spatial distributions of biological samples.
  • 机译 小鼠心脏组织的多尺度X射线相衬断层扫描
    摘要:The spatial organization of cardiac muscle tissue exhibits a complex structure on multiple length scales, from the sarcomeric unit to the whole organ. Here we demonstrate a multi-scale three-dimensional imaging (3d) approach with three levels of magnification, based on synchrotron X-ray phase contrast tomography. Whole mouse hearts are scanned in an undulator beam, which is first focused and then broadened by divergence. Regions-of-interest of the hearts are scanned in parallel beam as well as a biopsy by magnified cone beam geometry using a X-ray waveguide optic. Data is analyzed in terms of orientation, anisotropy and the sarcomeric periodicity via a local Fourier transformation.
  • 机译 光学相干断层扫描血管造影术表征早期皮肤辐射损伤
    摘要:Cutaneous radiation injury (CRI) is a skin injury caused by exposure to high dose ionizing radiation (IR). Diagnosis and treatment of CRI is difficult due to its initial clinically latent period and the following inflammatory bursts. Early detection of CRI before clinical symptoms will be helpful for effective treatment, and various optical methods have been applied with limitations. Here we show that optical coherence tomography angiography (OCTA) could detect changes in the skin during the latent period in CRI mouse models non-invasively. CRI was induced on the mouse hindlimb with exposure to various IR doses and the injured skin regions were imaged longitudinally by OCTA until the onset of clinical symptoms. OCTA detected several changes in the skin including the skin thickening, the dilation of large blood vessels, and the irregularity in vessel boundaries. Some of OCTA findings were confirmed by histology. The study results showed that OCTA could be used for early CRI detection.
  • 机译 使用三次谐波显微镜在无标记的情况下评估单个皮质脑血管的血流动力学
    摘要:We show that third harmonic generation (THG) microscopy using a 1-MHz train of 1,300-nm femtosecond duration laser pulses enabled visualization of the structure and quantification of flow speed in the cortical microvascular network of mice to a depth of > 1 mm. Simultaneous three-photon imaging of an intravascular fluorescent tracer enabled us to quantify the cell free layer thickness. Using the label-free imaging capability of THG, we measured flow speed in different types of vessels with and without the presence of an intravascular tracer conjugated to a high molecular weight dextran (2 MDa FITC-dextran, 5% w/v in saline, 100 µl). We found a ∼20% decrease in flow speeds in arterioles and venules due to the dextran-conjugated FITC, which we confirmed with Doppler optical coherence tomography. Capillary flow speeds did not change, although we saw a ∼7% decrease in red blood cell flux with dextran-conjugated FITC injection.
  • 机译 通过添加基于U-Net的CNN来最小化伪影,从而在光学相干断层扫描中对淋巴管进行分割
    摘要:The lymphatic system branches throughout the body to transport bodily fluid and plays a key immune-response role. Optical coherence tomography (OCT) is an emerging technique for the noninvasive and label-free imaging of lymphatic capillaries utilizing low scattering features of the lymph fluid. Here, the proposed lymphatic segmentation method combines U-Net-based CNN, a Hessian vesselness filter, and a modified intensity-thresholding to search the nearby pixels based on the binarized Hessian mask. Compared to previous approaches, the method can extract shapes more precisely, and the segmented result contains minimal artifacts, achieves the dice coefficient of 0.83, precision of 0.859, and recall of 0.803.
  • 机译 贝塞尔光束对病理切片的高速,多模式,无标记成像
    摘要:Optical imaging of stained pathological slices has become the gold standard for disease diagnosis. However, the procedure of sample preparation is complex and time-consuming. Multiphoton microscopy (MPM) is promising for label-free imaging, but the imaging speed is limited, especially for whole slice imaging. Here we propose a high-speed, multi-modal, label-free MPM by Bessel scan-based strip mosaicking. With a Bessel beam for excitation, the extended depth-of-focus not only enables full axial information acquisition at once, but also alleviates the demanding requirement of sample alignment. With the strip mosaicking protocol, we can save the time of frequent sample transferring. Besides, we add a closely-attached reflection mirror under the sample for enhancing epi-detection signals, and employ circularly polarized beams for recording comprehensive information. We demonstrate its application in multi-modal, label-free imaging of human gastric cancer slices and liver cancer slices, and show its potential in rapid disease diagnosis.
  • 机译 使用深度学习加速多色光谱单分子定位显微镜
    摘要:Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously provides spatial localization and spectral information of individual single-molecules emission, offering multicolor super-resolution imaging of multiple molecules in a single sample with the nanoscopic resolution. However, this technique is limited by the requirements of acquiring a large number of frames to reconstruct a super-resolution image. In addition, multicolor sSMLM imaging suffers from spectral cross-talk while using multiple dyes with relatively broad spectral bands that produce cross-color contamination. Here, we present a computational strategy to accelerate multicolor sSMLM imaging. Our method uses deep convolution neural networks to reconstruct high-density multicolor super-resolution images from low-density, contaminated multicolor images rendered using sSMLM datasets with much fewer frames, without compromising spatial resolution. High-quality, super-resolution images are reconstructed using up to 8-fold fewer frames than usually needed. Thus, our technique generates multicolor super-resolution images within a much shorter time, without any changes in the existing sSMLM hardware system. Two-color and three-color sSMLM experimental results demonstrate superior reconstructions of tubulin/mitochondria, peroxisome/mitochondria, and tubulin/mitochondria/peroxisome in fixed COS-7 and U2-OS cells with a significant reduction in acquisition time.
  • 机译 结合超声和散射光学层析成像的最佳乳腺癌诊断策略
    摘要:Ultrasound (US)-guided near-infrared diffuse optical tomography (DOT) has demonstrated great potential as an adjunct breast cancer diagnosis tool to US imaging alone, especially in reducing unnecessary benign biopsies. However, DOT data processing and image reconstruction speeds remain slow compared to the real-time speed of US. Real-time or near real-time diagnosis with DOT is an important step toward the clinical translation of US-guided DOT. Here, to address this important need, we present a two-stage diagnostic strategy that is both computationally efficient and accurate. In the first stage, benign lesions are identified in near real-time by use of a random forest classifier acting on the DOT measurements and the radiologists’ US diagnostic scores. Any lesions that cannot be reliably classified by the random forest classifier will be passed on to the second stage which begins with image reconstruction. Functional information from the reconstructed hemoglobin concentrations is employed by a Support Vector Machine (SVM) classifier for diagnosis at the end of the second stage. This two-step classification approach which combines both perturbation data and functional features, results in improved classification, as denoted by the receiver operating characteristic (ROC) curve. Using this two-step approach, the area under the ROC curve (AUC) is 0.937 ± 0.009, with a sensitivity of 91.4% and specificity of 85.7%. In comparison, using functional features and US score yields an AUC of 0.892 ± 0.027, with a sensitivity of 90.2% and specificity of 74.5%. Most notably, the specificity is increased by more than 10% due to the implementation of the random forest classifier.
  • 机译 通过在1700 nm窗口激发的三次谐波生成成像来进行体内深脑血流速度测量
    摘要:Measurement of the hemodynamic physical parameter blood flow speed in the brain in vivo is key to understanding brain physiology and pathology. 2-photon fluorescence microscopy with single blood vessel resolution is typically used, which necessitates injection of toxic fluorescent dyes. Here we demonstrate a label-free nonlinear optical technique, third-harmonic generation microscopy excited at the 1700-nm window, that is promising for such measurement. Using a simple femtosecond laser system based on soliton self-frequency shift, we can measure blood flow speed through the whole cortical grey matter, even down to the white matter layer. Together with 3-photon fluorescence microscopy, we further demonstrate that the blood vessel walls generate strong THG signals, and that plasma and circulating blood cells are mutually exclusive in space. This technique can be readily applied to brain research.
  • 机译 偏振敏感光学相干层析成像技术在早期发现人关节软骨退变
    摘要:Detecting articular cartilage (AC) degeneration in its early stage plays a critical role in the diagnosis and treatment of osteoarthritis (OA). Polarization-sensitive optical coherence tomography (PS-OCT) is sensitive to the alteration and disruption of collagen organization that happens during OA progression. This study proposes an effective OA evaluating method based on PS-OCT imaging. A slope-based analysis is applied on the phase retardation images to segment articular cartilage into three zones along the depth direction. The boundaries and birefringence coefficients (BRCs) of each zone are quantified. Two parameters, namely phase homogeneity index (PHI) and zonal distinguishability ( z), are further developed to quantify the fluctuation within each zone and the zone-to-zone variation of the tissue birefringence properties. The PS-OCT based evaluating method then combines PHI and z to provide a score for the severity of OA. The proposed method is applied to human hip joint samples and the results are compared with the grading by histology images. The score shows very strong statistical significance in differentiating different stages of OA. Compared to using the BRC of each zone or a single BRC for the entire depth, the score shows great improvement in differentiating early-stage OA. The proposed method is shown to have great potential to be developed as a clinical tool for detecting OA.
  • 机译 单腔双波长全光纤飞秒激光用于多峰多光子显微镜
    摘要:A single-cavity dual-wavelength all-fiber femtosecond laser is designed to generate 1030 nm wavelength for high resolution multiphoton imaging and 1700 nm wavelength for long penetration depth imaging. Considering two-photon and three-photon microscopy (2PM and 3PM), the proposed laser provides the single-photon wavelength equivalent to 343 nm, 515 nm, 566 nm and 850 nm, that can be employed to excite a wide variety of intrinsic fluorophores, dyes, and fluorescent proteins. Generating two excitation wavelengths from a single laser reduces the footprint and cost significantly compared to having two separate lasers. Furthermore, an all-reflective microscope is designed to eliminate the chromatic aberration while employing two excitation wavelengths. The compact all-fiber alignment-free laser design makes the overall size of the microscope appropriate for clinical applications.
  • 机译 动态微光学相干断层扫描成像细胞内运动
    摘要:This paper describes a new technology that uses 1-µm-resolution optical coherence tomography (µOCT) to obtain cross-sectional images of intracellular dynamics with dramatically enhanced image contrast. This so-called dynamic µOCT (d-µOCT) is accomplished by acquiring a time series of µOCT images and conducting power frequency analysis of the temporal fluctuations that arise from intracellular motion on a pixel-per-pixel basis. Here, we demonstrate d-µOCT imaging of freshly excised human esophageal and cervical biopsy samples. Depth-resolved d-µOCT images of intact tissue show that intracellular dynamics provides a new contrast mechanism for µOCT that highlights subcellular morphology and activity in epithelial surface maturation patterns.
  • 机译 时域漫射光谱法对脂肪组织的非侵入性研究
    摘要:The human abdominal region is very heterogeneous and stratified with subcutaneous adipose tissue (SAT) being one of the primary layers. Monitoring this tissue is crucial for diagnostic purposes and to estimate the effects of interventions like caloric restriction or bariatric surgery. However, the layered nature of the abdomen poses a major problem in monitoring the SAT in a non-invasive way by diffuse optics. In this work, we examine the possibility of using multi-distance broadband time domain diffuse optical spectroscopy to assess the human abdomen non-invasively. Broadband absorption and reduced scattering spectra from 600 to 1100 nm were acquired at 1, 2 and 3 cm source-detector distances on ten healthy adult male volunteers, and then analyzed using a homogeneous model as an initial step to understand the origin of the detected signal and how tissue should be modeled to derive quantitative information. The results exhibit a clear influence of the layered nature on the estimated optical properties. Clearly, the underlying muscle makes a relevant contribution in the spectra measured at the largest source-detector distance for thinner subjects related to blood and water absorption. More unexpectedly, also the thin superficial skin layer yields a direct contamination, leading to higher water content and steeper reduced scattering spectra at the shortest distance, as confirmed also by simulations. In conclusion, provided that data analysis properly accounts for the complex tissue structure, diffuse optics may offer great potential for the continuous non-invasive monitoring of abdominal fat.
  • 机译 使用CUDA GPU在人的皮肤上进行实时面部Gabor光学相干断层扫描血管造影
    摘要:We recently proposed an optical coherence tomographic angiography (OCTA) algorithm, Gabor optical coherence tomographic angiography (GOCTA), which can extract microvascular signals from a spectral domain directly with lower computational complexity compared to other algorithms. In this manuscript, we combine a programmable swept source, an OCT complex signal detecting unit, and graphics process units (GPU) to achieve a real-time en-face GOCTA system for human skin microvascular imaging. The programmable swept source can balance the A-scan rate and the spectral tuning range; the polarization-modulation based complex signal detecting unit can double the imaging depth range, and the GPU can accelerate data processing. C++ and CUDA are used as the programming platform where five parallel threads are created for galvo-driving signal generation, data acquisition, data transfer, data processing, and image display, respectively. Two queues (for the raw data and images, respectively) are used to improve the data exchange efficiency among different devices. In this study, the data acquisition time and data processing time for each 3D complex volume (256×304×608 pixels,) are 405.3 and 173.7 milliseconds respectively. To the best of our knowledge, this is the first time to show microvascular images covering 3×3 mm at a refresh rate of 2.5 Hz.
  • 机译 无透镜显微镜平台,用于单细胞和组织可视化
    摘要:Today, 3D imaging techniques are emerging, not only as a new tool in early drug discovery but also for the development of potential therapeutics to treat disease. Particular efforts are directed towards in vivo physiology to avoid perturbing the system under study. Here, we assess non-invasive 3D lensless imaging and its impact on cell behavior and analysis. We test our concept on various bio-applications and present here the first results. The microscopy platform based on in-holography provides large fields of view images (several mm compared to several hundred µm ) with sub-micrometer spatial resolution. 3D image reconstructions are achieved using back propagation functions post-processing.
  • 机译 等效的两个光学质量指标可预测多焦点假晶状体患者的视力
    摘要:This article studies the relationship between two metrics, the area under the modulation transfer function (MTFa) and the energy efficiency (EE), and their ability to predict the visual quality of patients implanted with multifocal intraocular lenses (IOLs). The optical quality of IOLs is assessed in vitro using two metrics, the MTFa and EE. We measured them for three different multifocal IOLs with parabolic phase profile using image formation, through-focus (TF) scanning, three R, G, B wavelengths, and two pupils. We analyzed the correlation between MTFa and EE. In parallel, clinical defocus curves of visual acuity (VA) were measured and averaged from sets of patients implanted with the same IOLs. An excellent linear correlation was found between the MTFa and EE for the considered IOLs, wavelengths and pupils (R  > 0.9). We computed the polychromatic TF-MTFa, TF-EE, and derived mathematical relationships between each metrics and clinical average VA. MTFa and EE proved to be equivalent metrics to characterize the optical quality of the studied multifocal IOLs and also in terms of clinical VA predictability.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号