您现在的位置:首页>美国卫生研究院文献>Applied Physics Letters

期刊信息

  • 期刊名称:

    -

  • 刊频: Weekly, 1986-
  • NLM标题: Appl Phys Lett
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<5/20>
441条结果
  • 机译 触诊颗粒以测量组织弹性
    摘要:We propose acoustic particle palpation—the use of sound to press a population of acoustic particles against an interface—as a method for measuring the qualitative and quantitative mechanical properties of materials. We tested the feasibility of this method by emitting ultrasound pulses across a tunnel of an elastic material filled with microbubbles. Ultrasound stimulated the microbubble cloud to move in the direction of wave propagation, press against the distal surface, and cause deformations relevant for elasticity measurements. Shear waves propagated away from the palpation site with a velocity that was used to estimate the material's Young's modulus.
  • 机译 用于宽带纳米力学性能测量的光热激发力调制显微镜
    摘要:We demonstrate photothermally excited force modulation microscopy (PTE FMM) for mechanical property characterization across a broad frequency range with an atomic force microscope (AFM). Photothermal excitation allows for an AFM cantilever driving force that varies smoothly as a function of drive frequency, thus avoiding the problem of spurious resonant vibrations that hinder piezoelectric excitation schemes. A complication of PTE FMM is that the sub-resonance cantilever vibration shape is fundamentally different compared to piezoelectric excitation. By directly measuring the vibrational shape of the cantilever, we show that PTE FMM is an accurate nanomechanical characterization method. PTE FMM is a pathway towards the characterization of frequency sensitive specimens such as polymers and biomaterials with frequency range limited only by the resonance frequency of the cantilever and the low frequency limit of the AFM.
  • 机译 两级射频干涉仪传感器
    摘要:We show that simple radio-frequency (RF) interferometers can have slow-wave positive group delay (PGD) or negative group delay (NGD), as well as superluminal propagation (SP) regions, due to a destructive interference process. These properties are easily tunable, which makes RF interferometers unique among systems that have NGD and SP regimes. A two-stage interferometer arrangement, which includes a first stage interferometer in the material-under-test path of a second stage, has significantly improved sensitivity in comparison with a one-stage reference interferometer. With a power divider based first stage and at its maximum NGD frequency, the frequency sensitivity improvement is as high as 7 times. With a quadrature based first stage, the sensitivity is increased by as much as 20 times. Sensitivity improvements are also observed at PGD and SP frequency regions.
  • 机译 快速缩回在可湿性毛细管中移动的微量水塞
    摘要:We report a transport behavior—specifically, rapid retraction movement—of small (∼μL) deionized water plugs traveling in series within a small wettable tubular geometry. In this study, two water plugs separated by a certain distance in a dry cylindrical glass capillary were moved by positive pressure airflow applied at the tube inlet. As the plugs travel, a thin aqueous film is generated between the plugs as a result of the leading plug's aqueous deposition onto the inner surface of the tube. The leading plug continuously loses volume by film deposition onto the surface and eventually ruptures. Then, the lagging plug quickly travels the distance initially separating the two plugs (plug retraction). Our studies show that the rapid retraction of the lagging plug is caused by surface tension in addition to the positive pressure applied. Furthermore, the plug retraction speed is strongly affected by tube radius and the distance between the plugs.
  • 机译 1.7µμm的快速光学参量振荡器激光进行的高速血管内光声成像
    摘要:Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.
  • 机译 用于生物技术应用的高度可调的垂直磁化合成反铁磁体
    摘要:Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer motif. We demonstrate the transfer of magnetic properties from thin films to lithographically defined 2 μm particles which have been lifted off into solution. We simulate the minimum energy state of a synthetic antiferromagnetic bilayer system that is free to rotate in an applied field and show that the low field susceptibility of the system is equal to the magnetic hard axis followed by a sharp switch to full magnetization as the field is increased. This agrees with the experimental results and explains the behaviour of the particles in solution.
  • 机译 通过有限元建模和光学相干弹性成像分析曲率和厚度对角膜状结构中弹性波速度的影响
    摘要:Wave models that have been used to extract the biomechanical properties of the cornea from the propagation of an elastic wave are based on an assumption of thin-plate geometry. However, this assumption does not account for the effects of corneal curvature and thickness. This study conducts finite element (FE) simulations on four types of cornea-like structures as well as optical coherence elastography (OCE) experiments on contact lenses and tissue-mimicking phantoms to investigate the effects of curvature and thickness on the group velocity of an elastic wave. The elastic wave velocity as determined by FE simulations and OCE of a spherical shell section decreased from ∼2.8 m/s to ∼2.2 m/s as the radius of curvature increased from 19.1 mm to 47.7 mm and increased from ∼3.0 m/s to ∼4.1 m/s as the thickness of the agar phantom increased from 1.9 mm to 5.6 mm. Both the FE simulation and OCE results confirm that the group velocity of the elastic wave decreases with radius of curvature but increases with thickness. These results demonstrate that the effects of the curvature and thickness must be considered in the further development of accurate wave models for reconstructing biomechanical properties of the cornea.
  • 机译 电解质溶液中石墨烯纳米孔的电脉冲制备
    摘要:Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.
  • 机译 血红蛋白的非线性光声光谱
    摘要:As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
  • 机译 (100)具有增强压电特性的纹理化KNN基厚膜,用于血管内超声成像
    摘要:Using tape-casting technology, 35 μm free-standing (100)-textured Li doped KNN (KNLN) thick film was prepared by employing NaNbO3 (NN) as template. It exhibited similar piezoelectric behavior to lead containing materials: a longitudinal piezoelectric coefficient (d33) of ∼150 pm/V and an electromechanical coupling coefficient (kt) of 0.44. Based on this thick film, a 52 MHz side-looking miniature transducer with a bandwidth of 61.5% at −6 dB was built for Intravascular ultrasound (IVUS) imaging. In comparison with 40 MHz PMN-PT single crystal transducer, the rabbit aorta image had better resolution and higher noise-to-signal ratio, indicating that lead-free (100)-textured KNLN thick film may be suitable for IVUS (>50 MHz) imaging.
  • 机译 聚合物基准固态染料敏化太阳能电池中散射层诱导的能量存储功能
    摘要:Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.
  • 机译 使用光学腔实时检测脂质双层组件和去污剂引发的溶解
    摘要:The cellular membrane governs numerous fundamental biological processes. Therefore, developing a comprehensive understanding of its structure and function is critical. However, its inherent biological complexity gives rise to numerous inter-dependent physical phenomena. In an attempt to develop a model, two different experimental approaches are being pursued in parallel: performing single cell experiments (top down) and using biomimetic structures (bottom up), such as lipid bilayers. One challenge in many of these experiments is the reliance on fluorescent probes for detection which can create confounds in this already complex system. In the present work, a label-free detection method based on an optical resonant cavity is used to detect one of the fundamental physical phenomena in the system: assembly and solubilization of the lipid bilayer. The evanescent field of the cavity strongly interacts with the lipid bilayer, enabling the detection of the bilayer behavior in real-time. Two independent detection mechanisms confirm the formation and detergent-assisted solubilization of the lipid bilayers: (1) a refractive index change and (2) a material loss change. Both mechanisms can be monitored in parallel, on the same device, thus allowing for cross-confirmation of the results. To verify the proposed method, we have detected the formation of self-assembled phosphatidylcholine lipid bilayers from small unilamellar vesicles on the device surface in real-time. Subsequently, we exposed the bilayers to two different detergents (non-ionic Triton X-100 and anionic sodium dodecyl sulfate) to initiate solubilization, and this process was also detected in real-time. After the bilayer solubilization, the device returned to its initial state, exhibiting minimal hysteresis. The experimental wash-off was also collected and analyzed using dynamic light scattering.
  • 机译 优质超导金刚石中25 K以上的高Tc的特征
    摘要:We have observed zero resistivity above 10 K and an onset of resistivity reduction at 25.2 K in a heavily B-doped diamond film. However, the effective carrier concentration is similar to that of superconducting diamond with a lower Tc. We found that the carrier has a longer mean free path and lifetime than in the previous report, indicating that this highest Tc diamond has better crystallinity compared to that of other superconducting diamond films. In addition, the susceptibility shows a small transition above 20 K in the high quality diamond, suggesting a signature of superconductivity above 20 K. These results strongly suggest that heavier carrier doped defect-free crystalline diamond could give rise to high Tc diamond.
  • 机译 锆钛酸铅陶瓷自洽全基体材料常数的温度依赖性
    摘要:Up to date, there are no self-consistent data in the literature on the temperature dependence of full matrix material properties for piezoelectric materials because they are extremely difficult to determine. Using only one sample, we have measured the temperature dependence of full matrix constants of lead zirconate titanate (PZT-4) from room temperature to 120 °C by resonant ultrasound spectroscopy. Self-consistency is guaranteed here because all data at different temperatures come from one sample. Such temperature dependence data would make it a reality to accurately predict device performance at high temperatures using computer simulations.
  • 机译 基于SnO2 / CuO纳米异质结的高性能可见盲光电探测器
    摘要:We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2 p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated.
  • 机译 Néel和Brown旋转Langevin组合动力学在磁粉成像,传感和治疗中的应用
    摘要:Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges.
  • 机译 用电子束感应电流对石墨烯-MoS2异质结构中的界面电传输进行成像
    摘要:Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS2 heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrent collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping.
  • 机译 偏振敏感干涉式合成孔径显微镜
    摘要:Three-dimensional optical microscopy suffers from the well-known compromise between transverse resolution and depth-of-field. This is true for both structural imaging methods and their functional extensions. Interferometric synthetic aperture microscopy (ISAM) is a solution to the 3D coherent microscopy inverse problem that provides depth-independent transverse resolution. We demonstrate the extension of ISAM to polarization sensitive imaging, termed polarization-sensitive interferometric synthetic aperture microscopy (PS-ISAM). This technique is the first functionalization of the ISAM method and provides improved depth-of-field for polarization-sensitive imaging. The basic assumptions of polarization-sensitive imaging are explored, and refocusing of birefringent structures is experimentally demonstrated. PS-ISAM enables high-resolution volumetric imaging of birefringent materials and tissue.
  • 机译 一维半导体氧化物纳米材料的散射特性,分别针对不同的光-物质相互作用角进行探测
    摘要:We report the characteristic optical responses of one-dimensional semiconducting oxide nanomaterials by examining the individual nanorods (NRs) of ZnO, SnO2, indium tin oxide, and zinc tin oxide under precisely controlled, light-matter interaction geometry. Scattering signals from a large set of NRs of the different types are evaluated spatially along the NR length while varying the NR tilt angle, incident light polarization, and analyzer rotation. Subsequently, we identify material-indiscriminate, NR tilt angle- and incident polarization-dependent scattering behaviors exhibiting continuous, intermittent, and discrete responses. The insight gained from this study can advance our fundamental understanding of the optical behaviors of the technologically useful nanomaterials and, at the same time, promote the development of highly miniaturized, photonic and bio-optical devices utilizing the spatially controllable, optical responses of the individual semiconducting oxide NRs.
  • 机译 在双光子单粒子跟踪显微镜中提高z跟踪精度
    摘要:Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号