首页> 美国卫生研究院文献>Acta Crystallographica Section F: Structural Biology and Crystallization Communications >Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past present and future
【2h】

Three-dimensional structures in the design of therapeutics targeting parasitic protozoa: reflections on the past present and future

机译:针对寄生虫原生动物的药物设计中的三维结构:对过去现在和未来的思考

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parasitic protozoa cause a range of diseases which threaten billions of human beings. They are responsible for tremendous mortality and morbidity in the least-developed areas of the world. Presented here is an overview of the evolution over the last three to four decades of structure-guided design of inhibitors, leads and drug candidates aiming at targets from parasitic protozoa. Target selection is a crucial and multi-faceted aspect of structure-guided drug design. The major impact of advances in molecular biology, genome sequencing and high-throughput screening is touched upon. The most advanced crystallographic techniques, including XFEL, have already been applied to structure determinations of drug targets from parasitic protozoa. Even cryo-electron microscopy is contributing to our understanding of the mode of binding of inhibitors to parasite ribosomes. A number of projects have been selected to illustrate how structural information has assisted in arriving at promising compounds that are currently being evaluated by pharmacological, pharmacodynamic and safety tests to assess their suitability as pharmaceutical agents. Structure-guided approaches are also applied to incorporate properties into compounds such that they are less likely to become the victim of resistance mechanisms. A great increase in the number of novel antiparasitic compounds will be needed in the future. These should then be combined into various multi-compound therapeutics to circumvent the diverse resistance mechanisms that render single-compound, or even multi-compound, drugs ineffective. The future should also see (i) an increase in the number of projects with a tight integration of structural biology, medicinal chemistry, parasitology and pharmaceutical sciences; (ii) the education of more ‘medicinal structural biologists’ who are familiar with the properties that compounds need to have for a high probability of success in the later steps of the drug-development process; and (iii) the expansion of drug-development capabilities in middle- and low-income countries.
机译:寄生虫原生动物引起一系列威胁数十亿人类的疾病。它们是造成世界上最不发达地区巨大的死亡率和发病率的原因。本文概述了过去三到四十年中针对寄生虫原生动物靶标的抑制剂,前导物和候选药物的结构指导设计的发展概况。目标选择是结构指导药物设计的关键和多方面的方面。涉及分子生物学,基因组测序和高通量筛选方面的主要影响。包括XFEL在内的最先进的晶体学技术已应用于确定来自寄生虫原生动物的药物靶标的结构。甚至冷冻电子显微镜也有助于我们理解抑制剂与寄生虫核糖体的结合方式。选择了许多项目来说明结构信息如何帮助获得有希望的化合物,这些化合物目前正在通过药理,药效学和安全性测试进行评估,以评估其作为药物的适用性。结构导向方法也可用于将特性结合到化合物中,从而使它们不太可能成为耐药机制的受害者。未来将需要大量增加新型抗寄生虫化合物。然后,应将它们组合成多种多化合物疗法,以规避使单化合物甚至多化合物药物无效的多种耐药机制。未来还应看到(i)结构生物学,药物化学,寄生虫学和药物科学紧密结合的项目数量增加; (ii)对“药物结构生物学家”进行更多的教育,他们熟悉化合物在药物开发过程的后续步骤中具有很高成功几率所需具备的特性; (iii)扩大中低收入国家的药物开发能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号