首页> 美国卫生研究院文献>ACS AuthorChoice >SpontaneousMembrane-Translocating Peptide Adsorptionat Silica Surfaces: A Molecular Dynamics Study
【2h】

SpontaneousMembrane-Translocating Peptide Adsorptionat Silica Surfaces: A Molecular Dynamics Study

机译:自发膜转运肽吸附在二氧化硅表面:分子动力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spontaneous membrane-translocating peptides (SMTPs) have recently been shown to directly penetrate cell membranes. Adsorption of a SMTP, and some engineered extensions, at model silica surfaces is studied herein using fully atomistic molecular dynamics simulations in order to assess their potential to construct novel drug delivery systems. The simulations are designed to reproduce the electric fields above single, siloxide-rich charged surfaces, and the trajectories indicate that the main driving force for adsorption is electrostatic. An increase in the salt concentration slows down but does not prevent adsorption of the SMTP to the surface; it also does not result in peptide desorption, suggesting additional binding via hydrophobic forces. The results are used to design extensions to the peptide sequence which we find enhance adsorption but do not affect the adsorbed conformation. We also investigate the effect of surface hydroxylation on the peptide adsorption. In all cases, the final adsorbed conformations are with the peptide flattened to the surface with arginine residues, whichare key to the peptide’s function, anchoring it to the surfaceso that they are not exposed to solution. This conformation couldimpact their role in membrane translocation and thus has importantimplications for the design of future drug delivery vehicles.
机译:自发性膜移位肽(SMTPs)最近已显示可直接穿透细胞膜。本文使用完全原子分子动力学模拟研究了在模型二氧化硅表面上SMTP的吸附以及一些工程扩展,以评估其在构建新型药物递送系统方面的潜力。该模拟旨在重现单个富含氧化硅的带电表面上方的电场,轨迹表明吸附的主要驱动力是静电。盐浓度的增加会减慢速度,但不能阻止SMTP吸附到表面上。它也不会导致肽解吸,提示通过疏水力进行额外的结合。结果用于设计肽序列的延伸,我们发现该序列增强了吸附但不影响吸附的构象。我们还研究了表面羟基化对肽吸附的影响。在所有情况下,最终吸附的构象都是带有精氨酸残基的肽被平坦化至表面,是肽功能的关键,将其固定在表面这样他们就不会暴露在解决方案中。这种构象可以影响它们在膜移位中的作用,因此具有重要意义对未来药物输送工具的设计具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号