首页> 美国卫生研究院文献>ACS AuthorChoice >Competition between Bending and Internal PressureGoverns the Mechanics of Fluid Nanovesicles
【2h】

Competition between Bending and Internal PressureGoverns the Mechanics of Fluid Nanovesicles

机译:弯曲与内压之间的竞争控制流体纳米囊泡的力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanovesicles (∼100 nm) are ubiquitous in cell biology and an important vector for drug delivery. Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by which deformation dynamics affect internalization is poorly understood. This is partly due to the fact that experimental studies of the mechanics of such vesicles remain challenging, particularly at the nanometer scale where appropriate theoretical models have also been lacking. Here, we probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) indentation. The mechanical response of the nanovesicles shows initial linear behavior and subsequent flattening corresponding to inward tether formation. We derive a quantitative model, including the competing effects of internal pressure and membrane bending, that corresponds well to these experimental observations. Our results are consistent with a bending modulus of the lipid bilayer of ∼14kbT. Surprisingly, we find that vesicle stiffness is pressure dominated for adherent vesicles under physiological conditions. Our experimental method andquantitative theory represents a robust approach to study the mechanicsof nanoscale vesicles, which are abundant in biology, as well as beingof interest for the rational design of liposomal vectors for drugdelivery.
机译:纳米囊泡(〜100 nm)在细胞生物学中无处不在,是药物递送的重要载体。已知囊泡的机械性质会影响细胞摄取,但对变形动力学影响内在化的机制了解甚少。这部分是由于这样的事实,即对这种囊泡的力学性能的实验研究仍然具有挑战性,特别是在缺乏适当理论模型的纳米尺度上。在这里,我们使用原子力显微镜(AFM)压痕探测纳米级脂质体的机械性能。纳米囊泡的机械响应显示出初始线性行为和随后的扁平化,对应于向内的系链形成。我们得出了一个定量模型,其中包括内部压力和膜弯曲的竞争效应,与这些实验观察非常吻合。我们的结果与脂质双层的〜14kbT的弯曲模量一致。出乎意料的是,我们发现在生理条件下对于粘附的囊泡,囊泡的刚度是压力主导的。我们的实验方法和定量理论是研究力学的有效方法纳米囊泡,它们在生物学上非常丰富合理设计药物脂质体载体交货。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号