首页> 美国卫生研究院文献>ACS AuthorChoice >Statistical Analysis on the Performance of MolecularMechanics Poisson–Boltzmann Surface Area versus Absolute BindingFree Energy Calculations: Bromodomains as a Case Study
【2h】

Statistical Analysis on the Performance of MolecularMechanics Poisson–Boltzmann Surface Area versus Absolute BindingFree Energy Calculations: Bromodomains as a Case Study

机译:分子性能的统计分析力学泊松–玻尔兹曼表面积与绝对结合自由能计算:以Bromodomains为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Binding free energy calculations that make use of alchemical pathways are becoming increasingly feasible thanks to advances in hardware and algorithms. Although relative binding free energy (RBFE) calculations are starting to find widespread use, absolute binding free energy (ABFE) calculations are still being explored mainly in academic settings due to the high computational requirements and still uncertain predictive value. However, in some drug design scenarios, RBFE calculations are not applicable and ABFE calculations could provide an alternative. Computationally cheaper end-point calculations in implicit solvent, such as molecular mechanics Poisson–Boltzmann surface area (MMPBSA) calculations, could too be used if one is primarily interested in a relative ranking of affinities. Here, we compare MMPBSA calculations to previously performed absolute alchemical free energy calculations in their ability to correlate with experimental binding free energies for three sets of bromodomain–inhibitor pairs. Different MMPBSA approaches have been considered, including a standard single-trajectoryprotocol, a protocol that includes a binding entropy estimate, andprotocols that take into account the ligand hydration shell. Despitethe improvements observed with the latter two MMPBSA approaches, ABFEcalculations were found to be overall superior in obtaining correlationwith experimental affinities for the test cases considered. A differencein weighted average Pearson () and Spearman () correlations of 0.25 and 0.31was observedwhen using a standard single-trajectory MMPBSA setup ( = 0.64 and = 0.66for ABFE; = 0.39 and = 0.35for MMPBSA). The best performingMMPBSA protocols returned weighted average Pearson and Spearman correlationsthat were about 0.1 inferior to ABFE calculations: = 0.55 and = 0.56when including an entropy estimate,and = 0.53 and = 0.55when including explicit water molecules.Overall, the study suggests that ABFE calculations are indeed themore accurate approach, yet there is also value in MMPBSA calculationsconsidering the lower compute requirements, and if agreement to experimentalaffinities in absolute terms is not of interest. Moreover, for thespecific protein–ligand systems considered in this study, wefind that including an explicit ligand hydration shell or a bindingentropy estimate in the MMPBSA calculations resulted in significantperformance improvements at a negligible computational cost.
机译:由于硬件和算法的进步,利用炼金术途径的结合自由能计算变得越来越可行。尽管相对结合自由能(RBFE)计算开始被广泛使用,但是由于对计算的高要求和不确定的预测值,绝对结合自由能(ABFE)计算仍主要在学术环境中进行。但是,在某些药物设计方案中,RBFE计算不适用,ABFE计算可以提供替代方法。如果人们主要对亲和力的相对排名感兴趣,那么也可以使用在隐式溶剂中计算便宜的端点计算,例如分子力学泊松-玻尔兹曼表面积(MMPBSA)计算。在这里,我们将MMPBSA计算与先前执行的绝对炼金术自由能计算进行了比较,它们的能力与三组bromodomain-抑制剂对的实验结合自由能相关。已经考虑了不同的MMPBSA方法,包括标准的单轨迹协议,包括绑定熵估计的协议,以及考虑配体水合壳的方案。尽管后两种MMPBSA方法ABFE所观察到的改进发现计算在获得相关性方面总体上优越对于所考虑的测试案例具有实验亲和力。区别加权平均Pearson()和Spearman()的相关性分别为0.25和0.31被观测到使用标准单轨迹MMPBSA设置时(= 0.64和= 0.66用于ABFE; = 0.39和= 0.35MMPBSA)。表现最好MMPBSA协议返回加权平均Pearson和Spearman相关比ABFE计算低约0.1:= 0.55和= 0.56当包括熵估计时,和= 0.53和= 0.55当包括显性水分子时。总体而言,该研究表明ABFE计算确实是更精确的方法,但MMPBSA计算中也有价值考虑较低的计算要求,如果同意实验绝对关系并不重要。而且,对于在这项研究中考虑的特定蛋白质-配体系统,我们发现包括明确的配体水合壳或结合MMPBSA计算中的熵估计导致显着以可忽略的计算成本改进性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号