首页> 美国卫生研究院文献>AAPS PharmSci >Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data
【2h】

Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data

机译:简化基于整体生理的药代动力学模型以稳定临床数据的贝叶斯分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Whole-body physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development for their ability to predict drug concentrations in clinically relevant tissues and to extrapolate across species, experimental conditions and sub-populations. A whole-body PBPK model can be fitted to clinical data using a Bayesian population approach. However, the analysis might be time consuming and numerically unstable if prior information on the model parameters is too vague given the complexity of the system. We suggest an approach where (i) a whole-body PBPK model is formally reduced using a Bayesian proper lumping method to retain the mechanistic interpretation of the system and account for parameter uncertainty, (ii) the simplified model is fitted to clinical data using Markov Chain Monte Carlo techniques and (iii) the optimised reduced PBPK model is used for extrapolation. A previously developed 16-compartment whole-body PBPK model for mavoglurant was reduced to 7 compartments while preserving plasma concentration-time profiles (median and variance) and giving emphasis to the brain (target site) and the liver (elimination site). The reduced model was numerically more stable than the whole-body model for the Bayesian analysis of mavoglurant pharmacokinetic data in healthy adult volunteers. Finally, the reduced yet mechanistic model could easily be scaled from adults to children and predict mavoglurant pharmacokinetics in children aged from 3 to 11 years with similar performance compared with the whole-body model. This study is a first example of the practicality of formal reduction of complex mechanistic models for Bayesian inference in drug development.Electronic supplementary materialThe online version of this article (doi:10.1208/s12248-015-9840-7) contains supplementary material, which is available to authorized users.
机译:基于全身生理学的药代动力学(PBPK)模型由于能够预测临床相关组织中的药物浓度以及推断物种,实验条件和亚种群的能力而越来越多地用于药物开发。可以使用贝叶斯人口方法将全身PBPK模型拟合到临床数据。但是,如果考虑到系统的复杂性,如果有关模型参数的先验信息过于模糊,则分析可能会很耗时且在数值上不稳定。我们建议一种方法(i)使用贝叶斯适当的集总方法正式还原全身PBPK模型,以保留系统的机械解释并考虑参数不确定性;(ii)使用Markov将简化的模型拟合到临床数据链蒙特卡罗技术和(iii)优化的还原PBPK模型用于外推。先前开发的用于mavoglurant的16室全身PBPK模型减少到7个室,同时保留了血浆浓度-时间曲线(中位数和方差),并强调了大脑(目标部位)和肝脏(消除部位)。对于健康成人志愿者中运动型药物代谢动力学数据的贝叶斯分析,简化的模型在数值上比整体模型更稳定。最后,简化后的机械模型可以轻松地从成人扩展到儿童,并预测3至11岁儿童的药物滥用动力学,与全身模型相比具有相似的性能。本研究是贝叶斯推理在药物开发中正式简化复杂机制模型的形式化实用性的第一个示例。电子补充材料本文的在线版本(doi:10.1208 / s12248-015-9840-7)包含补充材料,该材料为可供授权用户使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号