首页> 中文期刊> 《农业工程学报》 >温室环境参数无线传感器网络监测系统构建与CC2530传输特性分析

温室环境参数无线传感器网络监测系统构建与CC2530传输特性分析

         

摘要

Aiming at the problems of traditional greenhouse environment monitoring systems such as complicated wiring, high cost, inflexible monitoring, and high energy consumption of previous wireless sensor networks (WSNs), this paper designed a WSN-based greenhouse environmental parameter monitoring system, constructed its hardware with a CC2530 wireless sensor network chip and peripheral interface, compiled its underlying software by using the protocol stack of Z-Stack, and developed the PC software of greenhouse environment monitoring system based on a VB software platform. The transmission characteristics of a CC2530 chip was analyzed, and the experimental results showed that the effective transmission distance of the nodes was 60 m when they were placed 1.5 m above the ground. The connection between RSSI and the distance of nodes could be seen that the transmission power of the nodes gradually increased with the change of distance. The magnitude of RSSI attenuated faster when the distance of nodes was between 0 to 20 m. The fluctuation of RSSI because of the signal was blocked by the jatropha in the greenhouse, and the average height of jatropha was 2 m. The packet loss rate started to increase when the RSSI was less than -80 dBm, and the basic signal transmission capability of nodes was lost when the RSSI was less than-90 dBm. Besides, a single node with two 5th batteries could sustain the acquisition of greenhouse environmental parameter data for 45 d and accurately detect the temperature, humidity, and soil volumetric water content for greenhouse environment. During the experiment of energy consumption, the sensor nodes of soil moisture acquired data every half-hour, and the sensor nodes of temperature and humidity collected data every hour. The sensor nodes of soil moisture significantly consumed more energy than the sensor nodes of temperature and humidity under the same conditions of power transmission after 20 d. There was a slight increase for the voltage of nodes in the process of dormancy. Once the voltage of nodes falls below 3 V, although it has few impacts to the capacity of signal transmission, it may lead to abnormal work for the sensors. Above all, this system was proved to be practical and reliable.%  针对传统温室环境监测系统布线繁杂、成本较高、监测灵活性差及以往无线传感器网络(wireless sensor network, WSN)能耗较高等问题,设计了一种基于WSN的温室环境参数监测系统.利用CC2530无线传感网络芯片和外围接口搭建了系统硬件,使用Z-Stack协议栈编制了系统底层软件,基于VB软件平台开发了的温室环境监测系统上位机软件,并验证分析了CC2530芯片的传输特性.结果表明,节点在距地表1.5 m时的有效传输距离为60 m,单个节点使用2节5号电池能够持续进行温室环境参数数据采集工作45 d,能较为准确的对温室环境温湿度及作物土壤体积含水率进行监测,系统具有较高的实用性与可靠性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号