首页> 中文期刊> 《理论物理通讯:英文版》 >Time Periodic Electroosmotic Flow of The Generalized Maxwell Fluids in a Semicircular Microchannel

Time Periodic Electroosmotic Flow of The Generalized Maxwell Fluids in a Semicircular Microchannel

         

摘要

Analytical solutions are presented using method of separation of variables for the time periodic electroosmotic flow (EOF) of linear viscoelastic fluids in semicircular microchannel. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the linearized Poisson-Boltzmann (P -B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influences of electric oscillating Reynolds number Re and Deborah number De on velocity amplitude are presented. For small Re, results show that the larger velocity amplitude is confined to the region near the charged wall when De is small. With the increase of the Deborah number De, the velocity far away the charged wall becomes larger for large Deborah number De. However, for larger Re, the oscillating characteristic of the velocity amplitude occurs and becomes significant with the increase of De, especially for larger Deborah number.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号