首页> 中文期刊> 《理论物理通讯:英文版》 >Physical Properties of C-Si Alloys in C2/m Structure

Physical Properties of C-Si Alloys in C2/m Structure

         

摘要

Using the first principles calculations based on density functional theory, the crystal structure, elastic anisotropy, and electronic properties of carbon, silicon and their alloys(C_(12)Si_4, C_8Si_8, and C_4Si_(12)) in a monoclinic structure(C2/m) are investigated. The calculated results such as lattice parameters, elastic constants, bulk modulus,and shear modulus of C_(16) and Si_(16) in C2/m structure are in good accord with previous work. The elastic constants show that C_(16), Si_(16), and their alloys in C2/m structure are mechanically stable. The calculated results of universal anisotropy index, compression and shear anisotropy percent factors indicate that C-Si alloys present elastic anisotropy,and C_8Si_8 shows a greater anisotropy. The Poisson's ratio and the B/G value show that C_8Si_8 is ductile material and other four C-Si alloys are brittle materials. In addition, Debye temperature and average sound velocity are predicted utilizing elastic modulus and density of C-Si alloys. The band structure and the partial density of states imply that C_(16) and Si_(16) are indirect band gap semiconductors, while C_(12)Si_4, C_8Si_8, and C_4Si_(12) are semi-metallic alloys.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号