首页> 中文期刊> 《中国科学》 >Theoretical study of bifurcated bent blue-shifted hydrogen bonds CH2…Y

Theoretical study of bifurcated bent blue-shifted hydrogen bonds CH2…Y

         

摘要

Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y… H2CZ (Z = O, S, Se) and Y…H2CZ2 (Z = F, Cl, Br) (Y = Cl-, Br-) at the MP2/6-311++G(d,p) and MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent blue-shifted H-bonds Y…H—C, and that the interaction energies and blue shifts are large, the energy of each Y…H—C H-bond is 15-27 kJ/mol, and Δr(CH) = -0.1 - -0.5 pm and Δv(CH) = 30 - 80 cm-1. The natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hy- perconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of elec- tron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号