首页> 中文期刊> 《稀有金属:英文版》 >3D processing map for hot working of extruded AZ80 magnesium alloy

3D processing map for hot working of extruded AZ80 magnesium alloy

         

摘要

The hot deformation behavior of extruded AZ80 magnesium alloy was investigated using compression tests in the temperature range of 250–400 °C and strain rate range of 0.001^(–1).000 s^(–1). The 3D power dissipation map was developed to evaluate the hot deformation mechanisms and determine the optimal processing parameters. Two domains of dynamic recrystallization were identified from the 3D power dissipation map, with one occurring in the temperature and strain rate range of 250–320 °C and 0.001–0.010 s^(–1)and the other one occurring in the temperature and strain rate range of 380–400 °C and 0.001–0.003 s^(–1). In order to delineate the regions of flow instability, Prasad's instability criterion, Murty's instability criterion and Gegel's stability criteria were employed to develop the 3D instability maps. Through microstructural examination, it is found that Prasad's and Murty's instability criteria are more effective than Gegel's stability criteria in predicting the flow instability regions for extruded AZ80 alloy. Further, the 3D processing maps were integrated into finite element simulation and the predictions of the simulation are in good agreement with the experimental results.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号