首页> 中文期刊> 《稀有金属:英文版》 >Structural evolution of mesoporous graphene/LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2) composite cathode for Li-ion battery

Structural evolution of mesoporous graphene/LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2) composite cathode for Li-ion battery

         

摘要

Layered LiMO_(2)(M=Ni,Co,and Mn) is a type of promising cathode materials for high energy density and high work voltage lithium-ion batteries.However,the poor rate performance and low power density hinder its further applications.The capacity fade is related to the structural transformation in the layered LiMO_(2).In this work,the structural changes of bi-material cathode composed of mesoporous graphene and layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM) were studied via in situ X-ray diffraction(XRD).During different C-rate charge-discharge test at the voltage range of 2.5-4.1 V,the composite cathode of NCM-graphene(NCM-G) reveals better rate performances than pure NCM cathode.The NCM-G composite electrode displays a higher rate capability of 76.7 mAh·g^(-1) at 5 C rate,compared to the pure NCM cathode of 69.8 mAh·g^(-1)discharge capacity.The in situ XRD results indicate that a reversible phase transition from hexagonal H1 to hexagonal H2 occurs in layered NCM material during 1 C chargedischarge process.With the current increasing to 2 C/5 C,the structure of layered NCM material for both electrodes reveals few changes during charge and discharge processes,which indicates the less utilization of NCM component at high C-rates.Hence,the improved rate performance for bi-material electrode is attributed to the highly conductive mesoporous graphene and the synergistic effect of mesoporous graphene and NCM material.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号