首页> 中文期刊> 《能源化学:英文版》 >Insight into the structural evolution and thermal behavior of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode under deep charge

Insight into the structural evolution and thermal behavior of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cathode under deep charge

         

摘要

By virtue of the crucial effect of the crystal structure and transition metal(TM)redox evolution on the performance of LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM)cathode,systematical investigation is carried out to better understand the charge mechanism upon deep charging.Based on the results of X-ray diffraction and highresolution transmission electron microscope,phase transformations existing on particle surface are promoted by high potential because of the deeper lithium vacancies,accompanied by more substantial structure instability.Soft X-ray absorption spectroscopy indicates that Ni acts as the major contributor to charge compensation while Co displays a remarkable redox activity over the deep charge range.The elevated integrated intensity of pre-edge in O K-edge spectra reveals the extensive amount of holes formed in O 2 p orbitals and the enhanced hybridization of TM 3 d-O 2 p orbitals.Considering the close relationship between thermal behavior and structural evolution,the tendency of phase transitions and O_(2) release upon heating is accelerated by voltage rise,demonstrating the aggravated instability due to deeper Li utilization.Remaining Li contents in NCM are employed to estimate the amount of oxygen released in structural transformation and its detrimental effect on stability declares Li contentdependent characteristics.Furthermore,the extended Li vacancies,higher proportion of Ni4+and stronger orbital hybridization are considered as three factors impeding the thermal stability of the highlydelithiated NCM.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号