首页> 中文期刊> 《颗粒学报(英文版)》 >Construction of hierarchical functional nanomaterials for energy conversion and storage

Construction of hierarchical functional nanomaterials for energy conversion and storage

         

摘要

Hierarchical functional nanomaterials have important applications in the fields of new energy and the environment because of performance advantages based on the coupling and collaboration of multilevel structures.The key to application is the design and control of the mesoscale structures,such as the crystal-facet structure,lattice orientation,defects,and dislocations.In this review,we present the controlled synthesis of novel semiconductor oxide and carbon-based nanocomposites with three-dimensional hierarchical structures by the multiphase-reaction process.We describe several typical reaction processes,such as the gas-phase flame-combustion method,the vapor-phase deposition technique,and the solid-liquid interface reaction process,to investigate the properties of fluid flow,mixing,transport,and chemical reaction.We also study the formation mechanism,structural evolution and control methods for hierarchical nanomaterials by using combined experimental and simulation methods.These well-designed and prepared hierarchical functional materials can be used in energy storage and conversion fields.Valuable information is provided for the structural design and performance control of new functional nanocomposites.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号