首页> 中文期刊> 《纳米研究:英文版》 >Oxygen vacancy-engineered BaTiO_(3)nanoparticles for synergistic cancer photothermal,photodynamic,and catalytic therapy

Oxygen vacancy-engineered BaTiO_(3)nanoparticles for synergistic cancer photothermal,photodynamic,and catalytic therapy

         

摘要

With the rapid development of photo-responsive nanomaterials,photo-triggered therapeutic strategies such as photothermal therapy(PTT)and photodynamic therapy(PDT)have been new alternatives to current cancer therapeutic methods.Herein,we have fabricated oxygen vacancy-engineered BaTiO_(3)(BTO-Ov)nanoparticles(NPs)for near-infrared(NIR)light-triggered PTT,PDT,and catalytic therapy cooperatively for significantly improving cancer therapy.Compared to pristine BaTiO_(3)nanoparticles,BTO-Ov has stronger NIR light absorption and narrower band gap structure,which results in superior photothermal conversion and superoxide radical generation capabilities through PTT and PDT.Meanwhile,due to the existence of Ti^(3+),BTO-Ov also exhibits peroxidase(POD)-like activity to produce hydroxyl radical under tumor environment,which can be further improved under 808 nm light irradiation.Both in vitro and in vivo results demonstrate that such a multifunctional therapeutic nanoplatform can achieve a high therapeutic efficacy triggered by a single NIR light irradiation.The defect engineering strategy can be used as a general approach to fabricate multifunctional cancer therapeutic nanoplatform.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号