首页> 中文期刊>金属学报:英文版 >Role of grain orientation in the failure of Sn-based solder joints under thermomechanical fatigue

Role of grain orientation in the failure of Sn-based solder joints under thermomechanical fatigue

     

摘要

A small Pb-free solder joint exhibits an extremely strong anisotropy due to the bodycentered tetragonal (BCT) lattice structure of β-Sn. Grain orientations can significantly influence the failure mode of Pb-free solder joints under thermomechanical fatigue (TMF) due to the coeffcient of thermal expansion (CTE) mismatch of β-Sn grains. The research work in this paper focused on the microstructure and damage evolution of Sn3.0Ag0.5Cu BGA packages as well as individual Sn3.5Ag solder joints without constraints introduced by the package structure under TMF tests. The microstructure and damage evolution in cross-sections of solder joints under thermomechanical shock tests were characterized using optical microscopy with cross-polarized light and scanning electron microscopy (SEM), and orientations of Sn grains were determined by orientation imaging microscopy (OIM). During TMF, obvious recrystallization regions were observed with different thermomechanical responses depending on Sn grain orientations. It indicates that substantial stresses can build up at grain boundaries, leading to significant grain boundary sliding. The results show that recrystallized grains prefer to nucleate along pre-existing high-angle grain boundaries and fatigue cracks tend to propagate intergranularly in recrystallized regions, leading to an accelerated damage after recrystallization.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号