首页> 外文期刊>中南大学学报(英文版) >基于自适应模型补偿的双级惯性稳定平台鲁棒控制
【24h】

基于自适应模型补偿的双级惯性稳定平台鲁棒控制

机译:基于自适应模型补偿的双级惯性稳定平台鲁棒控制

获取原文
获取原文并翻译 | 示例
       

摘要

为了实现更加优越的跟踪精度,光电惯性稳定平台采取粗、精双级控制系统形式.其中,粗级控制系统为常规的陀螺稳定平台,而精级控制系统由二级微动伺服控制系统组成,用来控制成像光路中透镜的精密运动.首先,本文对双级控制系统动力学模型进行建模,将其表示为多输入、多输出(MIMO)的耦合控制系统.然后,针对双级控制系统动力学模型的特点,推导了基于自适应模型前馈补偿的综合鲁棒H∞控制策略,保证了双级控制系统的整体稳定性,实现良好的跟踪性能和鲁棒性;然后,通过Lyapunov方法证明了双级控制系统的稳定性.最后,仿真和实验结果证明了所提控制器的有效性和可行性.%To achieve excellent tracking accuracy, a coarse-fine dual-stage control system is chosen for inertially stabilized platform. The coarse stage is a conventional inertially stabilized platform, and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path. Firstly, the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output (MIMO) control system. Then, by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity, a systematic robust H∞ control scheme is designed, which can achieve good tracking performance, as well as improve system robustness against model uncertainties. Lyapunov stability analysis confirmed the stability of the overall control system. Finally, simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
机译:为了实现更加优越的跟踪精度,光电惯性稳定平台采取粗、精双级控制系统形式.其中,粗级控制系统为常规的陀螺稳定平台,而精级控制系统由二级微动伺服控制系统组成,用来控制成像光路中透镜的精密运动.首先,本文对双级控制系统动力学模型进行建模,将其表示为多输入、多输出(MIMO)的耦合控制系统.然后,针对双级控制系统动力学模型的特点,推导了基于自适应模型前馈补偿的综合鲁棒H∞控制策略,保证了双级控制系统的整体稳定性,实现良好的跟踪性能和鲁棒性;然后,通过Lyapunov方法证明了双级控制系统的稳定性.最后,仿真和实验结果证明了所提控制器的有效性和可行性.%To achieve excellent tracking accuracy, a coarse-fine dual-stage control system is chosen for inertially stabilized platform. The coarse stage is a conventional inertially stabilized platform, and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path. Firstly, the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output (MIMO) control system. Then, by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity, a systematic robust H∞ control scheme is designed, which can achieve good tracking performance, as well as improve system robustness against model uncertainties. Lyapunov stability analysis confirmed the stability of the overall control system. Finally, simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号