首页> 中文期刊> 《应用气象学报》 >北半球平流层大气环流转型的基本气候特征

北半球平流层大气环流转型的基本气候特征

         

摘要

利用1948-2009年NCEP/NCAR逐日高度场和风场再分析资料探讨了平流层各主要层次上环流转型的年际、年代际时空演变特征.结果表明:北半球平流层冬季环流转为夏季环流的过程是高层环流转型早,低层环流转型晚,但在各层次上环流转型早晚存在着区域性差异.自新地岛到西伯利亚北部地区的环流转型最早,且该区域与北半球环流平均转型时间的年际以及年代际特征最相近.北半球平流层环流转型的气候平均时间早于东亚热带季风爆发时间,从而可能成为季风预测的前兆信号.分析还得到平流层各主要层次环流转型时间具有明显的年代际特征,环流转型时间呈现由偏晚到偏早、又从偏早到偏晚的变化特征,只是年代际转折年份在不同区域、不同层次存在差异.此外,平流层环流转型时间普遍存在准2年、准3~6年、准9~12年以及准21~24年的周期,可能与气候系统其他成员有密切联系.%The basic climatic features of stratospheric circulation in Northern Hemisphere demonstrate different forms in winter and summer. In winter, the cold cyclone system and westerly winds prevail in high latitudes, while in summer the situation is the opposite. In terms of inversion of geopotential height gradient and zonal wind direction, a transition date index (TDD indicating the change dates from summer to winter circulations in the stratosphere in Northern Hemisphere is defined by using NCEP/NCAR reanalysis daily data. Some statistic methods such as linear tendency, wavelet analysis, binomial coefficient smooth and Mann-Kendall are applied to analyze the inter-annual and inter-decadal features of the transition dates at all main levels in the stratosphere. Results indicate that in the stratosphere, with the height rising, the transition date becomes earlier and the summer circulation lasts longer. For instance, the earliest circulation transition in the stratosphere occurs at the height of 10 hPa and 20 hPa, and it shifts to 30 hPa in a short period. However, it takes longer for the transition to shift from 30 hPa to 50 hPa than that from 10 hPa to 30 hPa. Which takes almost one month. The average onset date of the South China Sea Summer Monsoon (SCSSM) is one of the earliest dates in Asia Summer Monsoon (ASM) system and it is much later than the transition dates in stratosphere. Therefore, TDI can be used as a pre-signal for monitoring and predicting ASM. Furthermore, there exists an obvious regional difference in the circulation transition, among which the transition dates at each level in Siberia is the earliest and that is relatively later in Bering Sea and Greenland. The inter-annual and inter-decadal features of the circulation transition dates in Northern Hemisphere and the aforementioned three different regions are quite apparent, turning from late to early and then to late again in the past 62 years. Particularly the circulation transition date in Northern Hemisphere and in Siberia shares some similarities in inter-annual and inter-decadal variations, for example, the time variation shows significant fluctuations, and both have a transition peak in 1975. The transition dates in Bering Sea and Greenland also have the similar features, for example, the time fluctuation is relatively small. Moreover, circulation transition dates vary with the height and region, but they all have a quasi-2-year, a quasi-3-to-6-year, a quasi-9-to-12-year or a quasi-21-to-24-year cycle which may have close connections with other members of the climate system.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号