首页> 中文期刊> 《矿物冶金与材料学报:英文版》 >Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen

Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen

         

摘要

The H-terminated diamond films, which exhibit high surface conductivity, have been used in high-frequency and high-power electronic devices. In this paper, the surface conductive channel on specimens from the same diamond film was obtained by hydrogen plasma treatment and by heating under a hydrogen atmosphere, respectively, and the surface carrier transport characteristics of both samples were compared and evaluated. The results show that the carrier mobility and carrier density of the sample treated by hydrogen plasma are 15 cm^2·V^(-1)·s^(-1) and greater than 5 × 1012 cm^(-2), respectively, and that the carrier mobilities measured at five different areas are similar. Compared to the hydrogen-plasma-treated specimen, the thermally hydrogenated specimen exhibits a lower surface conductivity, a carrier density one order of magnitude lower, and a carrier mobility that varies from 2 to 33 cm^2·V^(-1)·s^(-1). The activated hydrogen atoms restructure the diamond surface, remove the scratches, and passivate the surface states via the etching effect during the hydrogen plasma treatment process, which maintains a higher carrier density and a more stable carrier mobility.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号