首页> 中文期刊>绿色能源与环境:英文版 >A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation

A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation

     

摘要

N-doped reduced graphene oxide quantum dots(N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants.However,the synthesis of N-rGQDs is generally a complex and high energy required process for the reduction and N-doping steps.In this study,a facile and green fabrication approach of N-rGQDs is established,based on a metal-free Fenton reaction without additional energy-input.The N structures of N-rGQDs play a significant role in the promotion of their catalytic performance.The N-rGQDs with relatively high percentage of aromatic nitrogen(NAr-rGQDs) perform excellent catalytic activities,with which the degradation efficiency of pollutant is enhanced by 25 times.Density functional theory(DFT) calculation also indicates aromatic nitrogen structures with electron-rich sites are prone to transfer electron,presenting a key role in the catalytic reaction.This metal-free Fenton process provides a green and costeffective strategy for one-step fabrication of N-rGQDs with controllable features and potential environmental catalytic applications.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号