首页> 中文期刊> 《安徽地质》 >Enhanced Performance of a Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode

Enhanced Performance of a Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode

         

摘要

Transition-metal dichalcogenide (TMD) semi-conductors have attracted interest as photoelectrochemical (PEC) electrodes due to their novel band-gap structures, optoelectronic properties, and photocatalytic activities. However, the photo-harvesting efficiency still requires improvement. In this study, A TMD stacked heterojunction structure was adopted to further enhance the performance of the PEC cathode. A P-type WSe2 and an N-type MoS2 monolayer were stacked layer-by-layer to build a ultrathin vertical heterojunction using a micro-fabrication method. In situ measurement was employed to characterize the intrinsic PEC performance on a single-sheet heterostructure. Benefitting from its built-in electric field and type II band alignment, the MoS2/WSe2 bilayer heterojunction exhibited exceptional photocatalytic activity and a high incident photo-to-current conversion efficiency (IPCE). Comparing with the monolayer WSe2 cathode, the PEC current and the IPCE of the bilayer heterojunction increased by a factor of 5.6 and enhanced 50%, respectively. The intriguing perfor-mance renders the MoS2/WSe2 heterojunction attractive for application in high-performance PEC water splitting.

著录项

  • 来源
    《安徽地质》 |2018年第4期|50-58|共9页
  • 作者单位

    State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China;

    State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China;

    State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China;

    State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China;

    State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号