首页> 中文期刊> 《纳米能源研究(英文)》 >Progress and prospects of two-dimensional materials for membrane-based osmotic power generation

Progress and prospects of two-dimensional materials for membrane-based osmotic power generation

摘要

The electrical energy that can be harnessed from the salinity difference across the sea water and river water interface can be one of the sustainable and clean energy resources of the future.This energy can be harnessed via the nanofluidic channels that selectively permeate ions.The selective diffusion of cations and anions can produce electricity through reverse electrodialysis.Two-dimensional(2D)materials are a class of nanomaterials that hold great promise in this field.Several breakthrough works have been previously published which demonstrate the high electrical power densities of 2D membranes.The ion transportation can be either through the nano-sized in-plane pores or interlayer spacings of 2D materials.This review article highlights the progress in 2D materials for salinity gradient power generation.Several types of 2D membranes with various nano-architectures are discussed in this review article.These include atom-thick 2D membranes with nanopores,2D lamellar membranes,2D lamellar membranes with nanopores,2D/one-dimensional(1D),and 2D/2D hybrid membranes.The fabrication techniques,physical characteristics,ion transportation properties,and the osmotic power generation of these 2D membranes are elaborated in this review article.Finally,we overview the future research direction in this area.It is envisioned that the research on 2D materials can make practical salinity gradient power generation one step closer to reality.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号