首页> 中文期刊> 《干旱区科学:英文版》 >Species composition and diversity,and carbon stock in a dune ecosystem in the Horqin Sandy Land of northern China

Species composition and diversity,and carbon stock in a dune ecosystem in the Horqin Sandy Land of northern China

             

摘要

In this study, we determined carbon allocation and carbon stocks in the plant-soil system of different dune ecosystems in northeastern China. We quantified the species composition, above- and below-ground biomasses, and carbon stocks of three dune types(i.e. active dunes, semi-stabilized dunes and stabilized dunes) and their corresponding inter-dune lowlands(i.e. interdune lowlands of active dunes, interdune lowlands of semi-stabilized dunes and interdune lowlands of stabilized dunes) in the Horqin Sandy Land. The results showed that the succession series on interdune lowlands of the Horqin Sandy Land confirmed differences in species composition of the various dune types. Aboveground carbon(AGC) on the interdune lowlands of semi-stabilized dunes(33.04 g C/m2) was greater(P0.05) in belowground plant carbon(BGC). However, the percentage of plant BGC in interdune lowlands of active dunes(81.5%) was significantly higher(P<0.05) than that in the interdune lowlands of semi-stabilized dunes(58.9%). The predominant carbon pool in the study dune ecosystem was in the soil. It accounted for 95% to 99% of total carbon storage. Soil organic carbon(SOC) was at least 55% greater(P<0.05) in the interdunes than in the dunes. Stabilized dunes showed at least a 37% greater(P<0.05) SOC content than active dunes up to a 1-m soil depth. Meanwhile, SOC content of interdune lowlands of semi-stabilized dunes was greater(P<0.05) than that of interdune lowlands of active dunes only up to a 20-cm soil depth. The dune ecosystem showed a great potential to store carbon when interdune lowlands of active dunes were conversed to interdune lowlands of semi-stabilized dunes, which stored up to twice as much carbon per unit volume as interdune lowlands of active dunes.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号