首页> 中文期刊> 《工程(英文)(1947-3931)》 >A Set of Globally Stable N-PID Regulators for Robotic Manipulators

A Set of Globally Stable N-PID Regulators for Robotic Manipulators

         

摘要

This paper deals with the position control of robot manipulators with uncertain and varying-time payload. Proposed is a set of novel N-PID regulators consisting of a linear combination of the proportional control mode, derivative control mode, nonlinear control mode shaped by a nonlinear function of position errors, linear integral control mode driven by differential feedback, and nonlinear integral control mode driven by a nonlinear function of position errors. By using Lyapunov’s direct method and LaSalle’s invariance principle, the simple explicit conditions on the regulator gains to ensure global asymptotic stability are provided. The theoretical analysis and simulation results show that: an attractive feature of our scheme is that N-PID regulators with asymptotic stable integral actions have the faster convergence, better flexibility and stronger robustness with respect to uncertain and varying-time payload, and then the optimum response can be achieved by a set of control parameters in the whole control domain, even under the case that the payload is changed abruptly.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号