首页> 中文期刊> 《应用数学(英文)》 >Non-Negativity Preserving Numerical Algorithms for Problems in Mathematical Finance

Non-Negativity Preserving Numerical Algorithms for Problems in Mathematical Finance

         

摘要

We give a study result to analyze a rather different, semi-analytical numerical algorithms based on splitting-step methods with their applications to mathematical finance. As certain subsistent numerical schemes may fail due to producing negative values for financial variables which require non-negativity preserving. These algorithms which we are analyzing preserve not only the non-negativity, but also the character of boundaries (natural, reflecting, absorbing, etc.). The derivatives of the CIR process and the Heston model are being extensively studied. Beyond plain vanilla European options, we creatively apply our splitting-step methods to a path-dependent option valuation. We compare our algorithms to a class of numerical schemes based on Euler discretization which are prevalent currently. The comparisons are given with respect to both accuracy and computational time for the European call option under the CIR model whereas with respect to convergence rate for the path-dependent option under the CIR model and the European call option under the Heston model.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号