首页> 中文期刊> 《世界干细胞杂志:英文版(电子版)》 >Functional and molecular mechanism of intracellular pH regulation in human inducible pluripotent stem cells

Functional and molecular mechanism of intracellular pH regulation in human inducible pluripotent stem cells

             

摘要

AIM To establish a functional and molecular model of the intracellular pH(pH_i) regulatory mechanism in human induced pluripotent stem cells(hiPSCs).METHODS hiP SCs(HPS0077) were kindly provided by Dr. Dai from the Tri-Service General Hospital(IRB No. B-106-09). Changes in the pH_i were detected either by microspectrofluorimetry or by a multimode reader with a pH-sensitive fluorescent probe, BCECF, and the fluorescent ratio was calibrated by the high K^+/nigericin method. NH_4Cl and Na-acetate prepulse techniques were used to induce rapid intracellular acidosis and alkalization, respectively. The buffering power(β) was calculated from the ΔpH_i induced by perfusing different concentrations of(NH_4)_2SO_4. Western blot techniques and immunocytochemistry staining were used to detect the protein expression of pH_i regulators and pluripotency markers.RESULTS In this study, our results indicated that(1) the steadystate pH_i value was found to be 7.5 ± 0.01(n = 20) and 7.68 ± 0.01(n =20) in HEPES and 5% CO_2/HCO_3^- buffered systems, respectively, which were much greater than that in normal adult cells(7.2);(2) in a CO_2/HCO_3^--buffered system, the values of total intracellular buffering power(β) can be described by the following equation: β_(tot) = 107.79(pH_i)~2-1522.2(pH_i) + 5396.9(correlation coefficient R^2 = 0.85), in the estimated pH_i range of 7.1- 8.0;(3) the Na^+/H^+ exchanger(NHE) and the Na^+/HCO_3^- cotransporter(NBC) were found to be functionally activated for acid extrusion for pHi values less than 7.5 and 7.68, respectively;(4) V-ATPase and some other unknown Na^+-independent acid extruder(s) could only be functionally detected for pHi values less than 7.1;(5) the Cl^-/OH^- exchanger(CHE) and the Cl^- /HCO_3 anion exchanger(AE) were found to be responsible for the weakening of intracellular proton loading;(6) besides the CHE and the AE, a Cl^--independent acid loading mechanism was functionally identified; and(7) in hiPSCs, a strong positive correlation was observed between the loss of pluripotency and the weakening of the intracellular acid extrusion mechanism, which included a decrease in the steady-state pH i value and diminished the functional activity and protein expression of the NHE and the NBC.CONCLUSION For the first time, we established a functional and molecular model of a pHi regulatory mechanism and demonstrated its strong positive correlation with hiPSC pluripotency.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号