首页> 中文期刊> 《材料科学技术:英文版》 >Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene

Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene

         

摘要

Synthesis of hybrid carbon materials with core-shell structure and robust catalytic performance is of great research interest,and remains a great challenge in catalytic dehydrogenation of hydrocarbons reaction.In this paper,few-layer sp^(2) carbon decorated SiC nanocrystals with core-shell structure(SiC@C)were fabricated through a dual-confined magnesiothermic method by employing glucose and SiO_(2) as precursors.The SiC@C nanocrystals were further crosslinked to be a three dimensional(3D)mesoporous hybrid by the in situ generated carbon as binders and exhibiting a 410.30 m^(2) g^(−1) large surface area.The as-prepared SiC@C hybrid materials as metal-free catalysts were evaluated in the steam-free direct dehydrogenation of ethylbenzene to styrene.Benefiting from the abundant surface carbonyl groups on the graphite carbon layers,the optimized yield rate of styrene normalized by carbon mass was as high as 11.58 mmol g^(−1) carbon h^(−1),nearly 4 times that of nanodiamonds.Considering the low cost and excellent catalytic activity,the hybrid 3D SiC@C material may be a promising candidate for direct dehydrogenation of hydrocarbons.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号