首页> 中文期刊> 《材料科学技术:英文版》 >Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc)alloys

Nano-phase transformation of composite precipitates in multicomponent Al-Mg-Si(-Sc)alloys

         

摘要

Sc-addition can significantly enhance the performance of the micro-alloyed Al-Mg-Si-Sc alloys.However,the mechanisms by which the Sc element modifies the microstructure of the alloys are still unknown in many cases.Here,using atomic-scale transmission electron microscopy and atomic-resolution spectroscopy,we have revealed the microstructural differences between two age-hardened Al-0.5Mg-0.4Si(wt.%)alloys with and without Sc-addition.The first significant effect of Sc-addition on the precipitation microstructure of the Al-Mg-Si-Sc alloy is that Sc-atoms may distribute at theβ"-precipitate/Al-matrix interface and therefore accelerate aging kinetics at the initial stage of hardening.The second significant effect of Sc-addition is that in the transition from theβ"-hardened peak-age stage to theβ′-hardened late stage,Sc-atoms can greatly improve the stability of transitionalβ"/B'/β′composite precipitates by entering the B'-substructures and/or locating at the precipitate/Al interfaces.As such Sc-atoms effectively suppressβ"toβ'transformation and cross-sectional coarsening of bothβ"and composite precipitates,leading to much finer precipitate needles with smaller diameter but much larger length,as compared with those precipitate needles formed in the alloy without Sc-addition.Hence,the alloy with Sc-addition exhibits a much better thermal stability than that without Sc.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号