首页> 中文期刊> 《材料科学技术:英文版》 >Engineering of Co_(3O)_(4)@Ni_(2)P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting

Engineering of Co_(3O)_(4)@Ni_(2)P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting

         

摘要

Rational design of highly efficient,robust and nonprecious electrocatalysts for the oxygen reduction reaction(ORR),oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)is highly demanded and challenging.Here,heterostructural Co_(3O)_(4)@Ni_(2)P arrays with numerous reaction sites,unique interfacial electronic structure and fast charge transfer kinetics are developed as electrocatalysts for rechargeable Zn-air batteries and overall water splitting.Both density functional theory calculation and X-ray absorption fine structure analysis manifest that the synergistic structural and abundant electronic modulations interfaces are formed,thus simultaneously promoting the electrocatalytic kinetics,activities and stabilities.Specifically,it can achieve an ultralow overpotential of 270 m V and 28 m V at 10 m A cm^(-2) for OER and HER,respectively.The water electrolyzer delivers a current density of 10 m A cm^(-2) at 1.563 V;furthermore,rechargeable Zn-air batteries triggered by this heterostructure can achieve excellent cyclic stability of 177 h(2 h per cycle)at 10 m A cm^(-2);both devices are superior to the Pt/C+Ir/C.This work not only designs an efficient trifunctional electrocatalyst but also paves an avenue to understand the heterostructure engineering for catalysts development and disclose the underlying relationship of interfacial electronic structures and catalytic properties.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号