首页> 中文期刊> 《材料科学技术:英文版》 >Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI 3 perovskite solar cells

Dual bulk and interface engineering with ionic liquid for enhanced performance of ambient-processed inverted CsPbI 3 perovskite solar cells

         

摘要

All-inorganic cesium lead iodide(CsPbI_(3))perovskites with superior thermal stability are attractive candidates for perovskite solar cells(PSCs).Fabricating such inorganic PSCs in the ambient atmosphere is desirable for practical production,however,the challenge remains in inhibiting the phase transition of CsPbI_(3) in ambient air.Herein,we demonstrate a dual bulk and interface engineering using ionic liquid to stabilize CsPbI_(3) perovskite structure,thus enhancing the performance of ambient-processed inverted CsPbI_(3) PSCs.Such dual bulk and interface engineering is found effective not only in suppressing the bulk and interfacial charge carrier recombination and enhancing charge carrier transport and extraction,but also in protecting CsPbI_(3) crystal structure by leaving hydrophobic alkyl chains coverage at the boundary and surface to prevent phase transition caused by moisture from ambient air.The optimized device fully processed in the open air with relative humidity up to 55%exhibits remarkably enhanced efficiency and stability over the control device,with the efficiency increasing from 8.6%to 13.21%,and 92%efficiency maintaining after storage for 1680 h,which outperforms the control device with only 82%retaining after 648 h storage.We thus believe this work can provide an efficient alternative for the low-cost fabrication of ambient-processible PSCs.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号